FinTech2025-08-03

MCP Server - Reference Implementation in Fund Accounting

Building an MCP Server for Mutual Fund and ETF Accounting Static Data: A Complete Guide for Investment Management

MCPAIJavaPythonFund AccountingETF

Introduction

In investment management firms, mutual fund and ETF accounting systems rely heavily on accurate, consistent static data. This includes fund specifications, portfolio classifications, benchmark indices, pricing sources, regulatory mappings, and operational parameters. The Model Context Protocol (MCP) provides an excellent framework for exposing this critical data to AI agents in a structured, standardized way.

This article demonstrates how to build a robust MCP server that serves mutual fund and ETF accounting static data, enabling AI agents to process fund accounting, performance analysis, and regulatory reporting intelligently while maintaining data consistency across the organization.

Understanding the Model Context Protocol (MCP)

What is MCP?

The Model Context Protocol (MCP) is an open standard that enables seamless integration between AI agents and data sources, tools, and services. Unlike traditional APIs that require custom integration work for each AI system, MCP provides a standardized way for AI agents to discover, access, and interact with external resources.

MCP was designed specifically to address the challenges of building AI systems that need to work with diverse, dynamic data sources while maintaining consistency, security, and scalability.

Key MCP Concepts

Resources: Static or dynamic data that AI agents can read and reference. In our investment management context, this includes fund master data, security reference information, benchmark details, and regulatory classifications.

Tools: Functions that AI agents can invoke to perform operations or calculations. Examples include trade validation, NAV calculation, performance attribution, and risk analytics.

Prompts: Reusable templates that help AI agents interact with the data and tools in consistent ways.

Sampling: The ability for AI agents to explore and understand the structure of data before making requests.

MCP Architecture Benefits

MERMAID
1graph TB
2    subgraph "AI Agents"
3        A1[Portfolio Management Agent]
4        A2[Risk Analytics Agent]
5        A3[Compliance Agent]
6        A4[Performance Agent]
7    end
8    
9    subgraph "MCP Layer"
10        MCP[MCP Server<br/>Fund Accounting Data]
11    end
12    
13    subgraph "Data Sources"
14        DB[Fund Database]
15        PS[Pricing Services]
16        RS[Risk Systems]
17        CS[Compliance Systems]
18    end
19    
20    A1 --> MCP
21    A2 --> MCP
22    A3 --> MCP
23    A4 --> MCP
24    
25    MCP --> DB
26    MCP --> PS
27    MCP --> RS
28    MCP --> CS

Why Traditional APIs Are Insufficient for AI-Driven Investment Management

Limitations of Standard REST/GraphQL APIs

#### 1. Lack of Semantic Understanding

Traditional APIs expose data through predefined endpoints but don't provide semantic context about what the data means or how it should be used.

PYTHON
1# Traditional API response - lacks context
2{
3    "fund_id": "FUND001",
4    "expense_ratio": 0.0075,
5    "benchmark_id": "BENCH001"
6}
7
8# MCP provides rich context and validation
9{
10    "fund": {
11        "fund_id": "FUND001",
12        "fund_name": "Global Equity Growth Fund",
13        "expense_ratio": 0.0075,
14        "fund_type": "MUTUAL_FUND",
15        "asset_class": "EQUITY",
16        "regulatory_classification": "40_ACT",
17        "investment_restrictions": {
18            "max_single_security_weight": 5.0,
19            "allowed_asset_classes": ["EQUITY"]
20        }
21    },
22    "validation_rules": ["check_concentration_limits", "verify_asset_class_compliance"],
23    "related_resources": ["benchmark_data", "share_classes", "pricing_rules"]
24}

#### 2. Static Schema Limitations

REST APIs typically have fixed schemas that don't adapt to the dynamic needs of AI agents. Investment management data often requires flexible access patterns.

YAML
1# Traditional API - Fixed endpoints
2GET /api/funds/{id}
3GET /api/securities/{id}
4GET /api/benchmarks/{id}
5
6# MCP - Dynamic resource discovery
7resources://fund-master          # Discovers all fund data
8resources://security-master      # Finds security classifications
9tools://validate_fund_trade      # Discovers validation capabilities
10tools://calculate_performance    # Finds analytical tools

#### 3. No Built-in Tool Discovery

Traditional APIs don't provide mechanisms for AI agents to discover what operations are available or how to use them effectively.

PYTHON
1# Traditional API - AI agent must be pre-programmed
2def validate_trade(fund_id, security_id, quantity):
3    # Agent needs to know exact endpoint and parameters
4    response = requests.post("/api/validate", {
5        "fund_id": fund_id,
6        "security_id": security_id, 
7        "quantity": quantity
8    })
9    # Agent must handle response format manually
10    return response.json()
11
12# MCP - AI agent discovers capabilities dynamically
13async def validate_trade_with_mcp(fund_id, security_id, quantity):
14    # Agent discovers available tools
15    tools = await mcp_client.list_tools()
16    
17    # Agent finds the right tool with description
18    validation_tool = find_tool(tools, "validate_fund_trade")
19    
20    # Agent understands parameters from schema
21    result = await mcp_client.call_tool(
22        validation_tool.name,
23        {
24            "fund_id": fund_id,
25            "security_id": security_id,
26            "quantity": quantity,
27            "trade_type": "BUY"  # Tool schema guides parameter inclusion
28        }
29    )
30    
31    # Structured response with validation results
32    return result

#### 4. Insufficient Context for Decision Making

Investment management requires understanding relationships between data elements, regulatory constraints, and business rules that traditional APIs don't capture.

PYTHON
1# Traditional API - Fragmented data
2fund_data = get_fund(fund_id)
3security_data = get_security(security_id)
4restrictions = get_restrictions(fund_id)
5benchmark_data = get_benchmark(fund_data['benchmark_id'])
6
7# AI agent must manually correlate and validate relationships
8
9# MCP - Contextual, relationship-aware responses
10validation_result = await mcp_client.call_tool("validate_fund_trade", {
11    "fund_id": fund_id,
12    "security_id": security_id,
13    "quantity": 1000,
14    "trade_type": "BUY"
15})
16
17# Returns comprehensive context
18{
19    "valid": True,
20    "fund": {...},  # Complete fund context
21    "security": {...},  # Security details with classifications
22    "compliance_checks": {
23        "concentration_limit": "PASS",
24        "asset_class_match": "PASS", 
25        "regulatory_compliance": "PASS"
26    },
27    "risk_impact": {
28        "portfolio_weight_change": 0.02,
29        "tracking_error_impact": 0.001
30    },
31    "benchmark_alignment": {
32        "security_in_benchmark": True,
33        "benchmark_weight": 0.015
34    }
35}

#### 5. No Standard Error Handling for AI Context

Traditional APIs return HTTP status codes and error messages designed for human developers, not AI agents that need to understand and react to different types of failures.

PYTHON
1# Traditional API error - Not AI-friendly
2{
3    "status": 400,
4    "error": "Bad Request",
5    "message": "Invalid fund ID"
6}
7
8# MCP error handling - AI-actionable
9{
10    "valid": False,
11    "error": "Fund FUND999 not found",
12    "error_type": "RESOURCE_NOT_FOUND",
13    "suggestions": [
14        {
15            "fund_id": "FUND001",
16            "fund_name": "Global Equity Growth Fund",
17            "similarity_score": 0.8
18        }
19    ],
20    "corrective_actions": [
21        "Verify fund ID spelling",
22        "Check if fund has been deactivated",
23        "Use fund search tool to find similar funds"
24    ]
25}

MCP's Advantages for Investment Management AI

#### 1. Intelligent Resource Discovery

PYTHON
1# AI agent can discover what data is available
2resources = await mcp_client.list_resources()
3for resource in resources:
4    print(f"Available: {resource.name} - {resource.description}")
5
6# Output:
7# Available: Fund Master - Complete fund data with specifications
8# Available: Security Master - Security reference with identifiers  
9# Available: Benchmark Indices - Performance benchmarks and constituents
10# Available: Pricing Rules - Security pricing methodology and validation

#### 2. Self-Documenting Tools

PYTHON
1# AI agent understands tool capabilities from schema
2tools = await mcp_client.list_tools()
3trade_validation_tool = find_tool(tools, "validate_fund_trade")
4
5print(trade_validation_tool.description)
6# "Validate if a trade complies with fund restrictions and parameters"
7
8print(trade_validation_tool.inputSchema)
9# Shows required parameters, types, and constraints

#### 3. Contextual Data Relationships

MCP responses include related information that AI agents need for decision-making, reducing the number of API calls and providing richer context.

PYTHON
1# Single MCP call provides comprehensive context
2result = await mcp_client.call_tool("calculate_fund_nav", {
3    "fund_id": "FUND001",
4    "nav_date": "2024-01-31"
5})
6
7# Response includes:
8# - Fund specifications
9# - All holdings with current positions
10# - Pricing sources and validation status
11# - Expense accruals
12# - Share class information
13# - Historical NAV trends

#### 4. Built-in Validation and Business Rules

MCP tools can encapsulate complex business logic that AI agents can invoke without understanding the underlying complexity.

PYTHON
1# AI agent doesn't need to understand investment restrictions
2# MCP tool handles all validation logic
3compliance_check = await mcp_client.call_tool("validate_investment_compliance", {
4    "fund_id": "FUND001",
5    "proposed_trade": {
6        "security_id": "SEC001",
7        "quantity": 10000,
8        "trade_type": "BUY"
9    }
10})
11
12# Returns comprehensive compliance analysis
13# - Concentration limits
14# - Asset class restrictions  
15# - Regulatory requirements
16# - Risk limit impacts

Integration Complexity Comparison

#### Traditional API Integration

PYTHON
1class InvestmentDataService:
2    def __init__(self):
3        self.fund_api = FundAPI(base_url="https://funds.company.com/api")
4        self.security_api = SecurityAPI(base_url="https://securities.company.com/api")
5        self.pricing_api = PricingAPI(base_url="https://pricing.company.com/api")
6        self.risk_api = RiskAPI(base_url="https://risk.company.com/api")
7        
8    async def validate_trade(self, fund_id, security_id, quantity):
9        # Multiple API calls with manual error handling
10        try:
11            fund = await self.fund_api.get_fund(fund_id)
12            security = await self.security_api.get_security(security_id)
13            restrictions = await self.fund_api.get_restrictions(fund_id)
14            
15            # Manual validation logic
16            if security.asset_class not in fund.allowed_asset_classes:
17                return {"valid": False, "reason": "Asset class mismatch"}
18                
19            # More validation logic...
20            
21        except FundNotFoundError:
22            return {"valid": False, "reason": "Fund not found"}
23        except SecurityNotFoundError:
24            return {"valid": False, "reason": "Security not found"}
25        except Exception as e:
26            return {"valid": False, "reason": f"Validation failed: {str(e)}"}

#### MCP Integration

PYTHON
1class InvestmentMCPService:
2    def __init__(self):
3        self.mcp_client = MCPClient("fund-accounting-static-data")
4        
5    async def validate_trade(self, fund_id, security_id, quantity):
6        # Single MCP tool call with comprehensive validation
7        return await self.mcp_client.call_tool("validate_fund_trade", {
8            "fund_id": fund_id,
9            "security_id": security_id,
10            "quantity": quantity,
11            "trade_type": "BUY"
12        })
13        # MCP handles all error cases, validation logic, and relationships

The MCP approach reduces integration complexity from hundreds of lines of code to just a few lines, while providing richer functionality and better error handling.

Use Case: Investment Management Fund Accounting

The Challenge

Investment management firms face several challenges when managing fund accounting data:

  • Data Consistency: Multiple systems need access to the same fund reference data across portfolio management, accounting, and reporting
  • Real-time Validation: Fund transactions must be validated against current fund parameters, restrictions, and regulatory requirements
  • Complex Classifications: Securities need proper classification for risk management, regulatory reporting, and performance attribution
  • Benchmark Tracking: Accurate benchmark and index data for performance measurement and risk analytics
  • Regulatory Compliance: Proper fund categorization, risk metrics, and reporting requirements compliance
  • Agent Integration: AI agents need structured access to this data for automated fund accounting, compliance monitoring, and reporting

The Solution: MCP Server Architecture

An MCP server provides a standardized interface that multiple AI agents can use to access mutual fund and ETF accounting static data. This ensures consistency, reduces duplication, and enables sophisticated fund accounting workflows.

Core Data Models

Fund and Security Structure

PYTHON
1from dataclasses import dataclass
2from typing import List, Optional, Dict
3from enum import Enum
4from decimal import Decimal
5from datetime import date
6
7class FundType(Enum):
8    MUTUAL_FUND = "MUTUAL_FUND"
9    ETF = "ETF"
10    CLOSED_END_FUND = "CLOSED_END_FUND"
11    HEDGE_FUND = "HEDGE_FUND"
12    MONEY_MARKET = "MONEY_MARKET"
13
14class AssetClass(Enum):
15    EQUITY = "EQUITY"
16    FIXED_INCOME = "FIXED_INCOME"
17    ALTERNATIVE = "ALTERNATIVE"
18    CASH = "CASH"
19    COMMODITY = "COMMODITY"
20    REAL_ESTATE = "REAL_ESTATE"
21
22class PricingSource(Enum):
23    BLOOMBERG = "BLOOMBERG"
24    REUTERS = "REUTERS"
25    FACTSET = "FACTSET"
26    MSCI = "MSCI"
27    VENDOR_SPECIFIC = "VENDOR_SPECIFIC"
28
29@dataclass
30class Fund:
31    fund_id: str
32    fund_name: str
33    fund_type: FundType
34    asset_class: AssetClass
35    inception_date: date
36    base_currency: str
37    expense_ratio: Decimal
38    management_fee: Decimal
39    benchmark_id: str
40    nav_frequency: str  # DAILY, WEEKLY, MONTHLY
41    is_active: bool
42    regulatory_classification: str  # 40 Act, UCITS, etc.
43    investment_objective: str
44    minimum_investment: Decimal
45    share_classes: List[str]
46    
47@dataclass
48class ShareClass:
49    share_class_id: str
50    fund_id: str
51    class_name: str
52    ticker_symbol: Optional[str]
53    isin: Optional[str]
54    cusip: Optional[str]
55    expense_ratio: Decimal
56    management_fee: Decimal
57    distribution_fee: Decimal
58    load_front: Decimal
59    load_back: Decimal
60    minimum_investment: Decimal
61    currency: str
62    is_active: bool
63
64@dataclass
65class Benchmark:
66    benchmark_id: str
67    benchmark_name: str
68    provider: str
69    asset_class: AssetClass
70    currency: str
71    pricing_source: PricingSource
72    calculation_method: str
73    is_active: bool
74    constituent_count: Optional[int]
75    
76@dataclass
77class SecurityMaster:
78    security_id: str
79    security_name: str
80    asset_class: AssetClass
81    security_type: str  # STOCK, BOND, OPTION, FUTURE, etc.
82    currency: str
83    country_of_risk: str
84    sector: Optional[str]
85    industry: Optional[str]
86    pricing_source: PricingSource
87    exchange: Optional[str]
88    is_active: bool
89    identifiers: Dict[str, str]  # ISIN, CUSIP, SEDOL, etc.
90
91@dataclass
92class PricingRule:
93    rule_id: str
94    security_id: str
95    pricing_source: PricingSource
96    pricing_method: str  # MARKET, MODEL, BROKER, MATRIX
97    validation_rules: List[str]
98    fallback_sources: List[str]
99    stale_price_threshold_hours: int
100    is_active: bool

Python Implementation

MCP Server Setup

PYTHON
1import asyncio
2import json
3from typing import Any, Dict, List
4from decimal import Decimal
5from datetime import date, datetime
6from mcp.server import Server
7from mcp.server.stdio import stdio_server
8from mcp.types import (
9    Resource, 
10    Tool, 
11    TextContent,
12    GetResourceRequest,
13    CallToolRequest,
14    ListResourcesRequest,
15    ListToolsRequest
16)
17
18class FundAccountingMCPServer:
19    def __init__(self):
20        self.server = Server("fund-accounting-static-data")
21        self._setup_handlers()
22        
23        # Sample data - in production, this would come from database
24        self.funds = self._load_funds()
25        self.share_classes = self._load_share_classes()
26        self.benchmarks = self._load_benchmarks()
27        self.security_master = self._load_security_master()
28        self.pricing_rules = self._load_pricing_rules()
29        self.fund_restrictions = self._load_fund_restrictions()
30    
31    def _setup_handlers(self):
32        """Set up MCP protocol handlers"""
33        
34        @self.server.list_resources()
35        async def list_resources() -> List[Resource]:
36            return [
37                Resource(
38                    uri="funds://fund-master",
39                    name="Fund Master",
40                    mimeType="application/json",
41                    description="Complete fund master data with specifications and parameters"
42                ),
43                Resource(
44                    uri="funds://share-classes",
45                    name="Share Classes",
46                    mimeType="application/json",
47                    description="Share class details with fees and minimums"
48                ),
49                Resource(
50                    uri="funds://benchmarks",
51                    name="Benchmark Indices",
52                    mimeType="application/json",
53                    description="Benchmark and index reference data"
54                ),
55                Resource(
56                    uri="funds://security-master",
57                    name="Security Master",
58                    mimeType="application/json",
59                    description="Security reference data with classifications"
60                ),
61                Resource(
62                    uri="funds://pricing-rules",
63                    name="Pricing Rules",
64                    mimeType="application/json",
65                    description="Security pricing methodology and validation rules"
66                ),
67                Resource(
68                    uri="funds://fund-restrictions",
69                    name="Fund Restrictions",
70                    mimeType="application/json",
71                    description="Investment restrictions and compliance rules by fund"
72                )
73            ]
74        
75        @self.server.get_resource()
76        async def get_resource(request: GetResourceRequest) -> str:
77            if request.uri == "funds://fund-master":
78                return self._serialize_data(self.funds)
79            elif request.uri == "funds://share-classes":
80                return self._serialize_data(self.share_classes)
81            elif request.uri == "funds://benchmarks":
82                return self._serialize_data(self.benchmarks)
83            elif request.uri == "funds://security-master":
84                return self._serialize_data(self.security_master)
85            elif request.uri == "funds://pricing-rules":
86                return self._serialize_data(self.pricing_rules)
87            elif request.uri == "funds://fund-restrictions":
88                return self._serialize_data(self.fund_restrictions)
89            else:
90                raise ValueError(f"Unknown resource: {request.uri}")
91        
92        @self.server.list_tools()
93        async def list_tools() -> List[Tool]:
94            return [
95                Tool(
96                    name="validate_fund_trade",
97                    description="Validate if a trade complies with fund restrictions and parameters",
98                    inputSchema={
99                        "type": "object",
100                        "properties": {
101                            "fund_id": {"type": "string"},
102                            "security_id": {"type": "string"},
103                            "quantity": {"type": "number"},
104                            "trade_type": {"type": "string", "enum": ["BUY", "SELL"]},
105                            "trade_amount": {"type": "number"}
106                        },
107                        "required": ["fund_id", "security_id", "quantity", "trade_type"]
108                    }
109                ),
110                Tool(
111                    name="get_fund_benchmark",
112                    description="Get benchmark information for a specific fund",
113                    inputSchema={
114                        "type": "object",
115                        "properties": {
116                            "fund_id": {"type": "string"}
117                        },
118                        "required": ["fund_id"]
119                    }
120                ),
121                Tool(
122                    name="lookup_security_details",
123                    description="Get detailed security information including identifiers and classifications",
124                    inputSchema={
125                        "type": "object",
126                        "properties": {
127                            "identifier": {"type": "string"},
128                            "identifier_type": {"type": "string", "enum": ["ISIN", "CUSIP", "SEDOL", "TICKER", "INTERNAL_ID"]}
129                        },
130                        "required": ["identifier", "identifier_type"]
131                    }
132                ),
133                Tool(
134                    name="calculate_fund_metrics",
135                    description="Calculate key fund metrics like expense ratios, turnover, etc.",
136                    inputSchema={
137                        "type": "object",
138                        "properties": {
139                            "fund_id": {"type": "string"},
140                            "calculation_date": {"type": "string", "format": "date"},
141                            "metrics": {"type": "array", "items": {"type": "string"}}
142                        },
143                        "required": ["fund_id", "calculation_date"]
144                    }
145                ),
146                Tool(
147                    name="get_pricing_source",
148                    description="Get pricing source and methodology for a security",
149                    inputSchema={
150                        "type": "object",
151                        "properties": {
152                            "security_id": {"type": "string"},
153                            "pricing_date": {"type": "string", "format": "date"}
154                        },
155                        "required": ["security_id"]
156                    }
157                ),
158                Tool(
159                    name="validate_fund_classification",
160                    description="Validate fund classification for regulatory reporting",
161                    inputSchema={
162                        "type": "object",
163                        "properties": {
164                            "fund_id": {"type": "string"},
165                            "classification_type": {"type": "string", "enum": ["GICS", "MORNINGSTAR", "REGULATORY", "CUSTOM"]}
166                        },
167                        "required": ["fund_id", "classification_type"]
168                    }
169                )
170            ]
171        
172        @self.server.call_tool()
173        async def call_tool(request: CallToolRequest) -> List[TextContent]:
174            tool_handlers = {
175                "validate_fund_trade": self._validate_fund_trade,
176                "get_fund_benchmark": self._get_fund_benchmark,
177                "lookup_security_details": self._lookup_security_details,
178                "calculate_fund_metrics": self._calculate_fund_metrics,
179                "get_pricing_source": self._get_pricing_source,
180                "validate_fund_classification": self._validate_fund_classification
181            }
182            
183            if request.name in tool_handlers:
184                return await tool_handlers[request.name](request.arguments)
185            else:
186                raise ValueError(f"Unknown tool: {request.name}")
187    
188    async def _validate_fund_trade(self, args: Dict[str, Any]) -> List[TextContent]:
189        """Validate fund trade against restrictions and parameters"""
190        fund_id = args["fund_id"]
191        security_id = args["security_id"]
192        quantity = args["quantity"]
193        trade_type = args["trade_type"]
194        trade_amount = args.get("trade_amount", 0)
195        
196        # Find fund
197        fund = next((f for f in self.funds if f.fund_id == fund_id), None)
198        if not fund:
199            return self._create_response({
200                "valid": False,
201                "error": f"Fund {fund_id} not found"
202            })
203        
204        # Find security
205        security = next((s for s in self.security_master if s.security_id == security_id), None)
206        if not security:
207            return self._create_response({
208                "valid": False,
209                "error": f"Security {security_id} not found"
210            })
211        
212        # Get fund restrictions
213        restrictions = next((r for r in self.fund_restrictions if r["fund_id"] == fund_id), None)
214        
215        validation_result = {
216            "valid": True,
217            "fund": self._dataclass_to_dict(fund),
218            "security": self._dataclass_to_dict(security),
219            "validations": [],
220            "warnings": []
221        }
222        
223        # Validate asset class restrictions
224        if restrictions and "allowed_asset_classes" in restrictions:
225            if security.asset_class.value not in restrictions["allowed_asset_classes"]:
226                validation_result["valid"] = False
227                validation_result["validations"].append(
228                    f"Asset class {security.asset_class.value} not allowed for fund {fund_id}"
229                )
230        
231        # Validate concentration limits
232        if restrictions and "max_single_security_weight" in restrictions:
233            max_weight = restrictions["max_single_security_weight"]
234            validation_result["warnings"].append(
235                f"Monitor concentration limit: max {max_weight}% per security"
236            )
237        
238        # Currency validation
239        if security.currency != fund.base_currency:
240            validation_result["warnings"].append(
241                f"Currency mismatch: Security in {security.currency}, Fund base currency {fund.base_currency}"
242            )
243        
244        return self._create_response(validation_result)
245    
246    async def _get_fund_benchmark(self, args: Dict[str, Any]) -> List[TextContent]:
247        """Get benchmark information for a fund"""
248        fund_id = args["fund_id"]
249        
250        fund = next((f for f in self.funds if f.fund_id == fund_id), None)
251        if not fund:
252            return self._create_response({
253                "error": f"Fund {fund_id} not found"
254            })
255        
256        benchmark = next((b for b in self.benchmarks if b.benchmark_id == fund.benchmark_id), None)
257        if not benchmark:
258            return self._create_response({
259                "error": f"Benchmark {fund.benchmark_id} not found for fund {fund_id}"
260            })
261        
262        return self._create_response({
263            "fund_id": fund_id,
264            "fund_name": fund.fund_name,
265            "benchmark": self._dataclass_to_dict(benchmark)
266        })
267    
268    async def _lookup_security_details(self, args: Dict[str, Any]) -> List[TextContent]:
269        """Lookup security by identifier"""
270        identifier = args["identifier"]
271        identifier_type = args["identifier_type"]
272        
273        security = None
274        
275        if identifier_type == "INTERNAL_ID":
276            security = next((s for s in self.security_master if s.security_id == identifier), None)
277        else:
278            security = next((s for s in self.security_master 
279                           if identifier in s.identifiers.values()), None)
280        
281        if not security:
282            return self._create_response({
283                "found": False,
284                "message": f"Security not found for {identifier_type}: {identifier}"
285            })
286        
287        # Get pricing rules for this security
288        pricing_rule = next((pr for pr in self.pricing_rules 
289                           if pr.security_id == security.security_id), None)
290        
291        result = {
292            "found": True,
293            "security": self._dataclass_to_dict(security),
294            "pricing_rule": self._dataclass_to_dict(pricing_rule) if pricing_rule else None
295        }
296        
297        return self._create_response(result)
298    
299    async def _calculate_fund_metrics(self, args: Dict[str, Any]) -> List[TextContent]:
300        """Calculate fund metrics"""
301        fund_id = args["fund_id"]
302        calculation_date = args["calculation_date"]
303        requested_metrics = args.get("metrics", ["expense_ratio", "management_fee"])
304        
305        fund = next((f for f in self.funds if f.fund_id == fund_id), None)
306        if not fund:
307            return self._create_response({
308                "error": f"Fund {fund_id} not found"
309            })
310        
311        metrics = {}
312        
313        if "expense_ratio" in requested_metrics:
314            metrics["expense_ratio"] = float(fund.expense_ratio)
315        
316        if "management_fee" in requested_metrics:
317            metrics["management_fee"] = float(fund.management_fee)
318        
319        if "total_net_assets" in requested_metrics:
320            # In production, this would be calculated from positions
321            metrics["total_net_assets"] = 1000000.0  # Sample value
322        
323        if "number_of_holdings" in requested_metrics:
324            # In production, this would be calculated from positions
325            metrics["number_of_holdings"] = 150  # Sample value
326        
327        return self._create_response({
328            "fund_id": fund_id,
329            "calculation_date": calculation_date,
330            "metrics": metrics
331        })
332    
333    def _serialize_data(self, data):
334        """Serialize dataclass objects to JSON"""
335        if isinstance(data, list):
336            return json.dumps([self._dataclass_to_dict(item) for item in data], indent=2, default=str)
337        else:
338            return json.dumps(self._dataclass_to_dict(data), indent=2, default=str)
339    
340    def _dataclass_to_dict(self, obj):
341        """Convert dataclass to dictionary"""
342        if hasattr(obj, '__dict__'):
343            result = {}
344            for key, value in obj.__dict__.items():
345                if isinstance(value, Enum):
346                    result[key] = value.value
347                elif isinstance(value, (date, datetime)):
348                    result[key] = value.isoformat()
349                elif isinstance(value, Decimal):
350                    result[key] = float(value)
351                else:
352                    result[key] = value
353            return result
354        return obj
355    
356    def _create_response(self, data):
357        """Create standardized response"""
358        return [TextContent(
359            type="text",
360            text=json.dumps(data, indent=2, default=str)
361        )]
362    
363    def _load_funds(self) -> List[Fund]:
364        """Load fund master data"""
365        return [
366            Fund(
367                fund_id="FUND001",
368                fund_name="Global Equity Growth Fund",
369                fund_type=FundType.MUTUAL_FUND,
370                asset_class=AssetClass.EQUITY,
371                inception_date=date(2010, 1, 15),
372                base_currency="USD",
373                expense_ratio=Decimal("0.0075"),
374                management_fee=Decimal("0.0050"),
375                benchmark_id="BENCH001",
376                nav_frequency="DAILY",
377                is_active=True,
378                regulatory_classification="40_ACT",
379                investment_objective="Long-term capital growth through global equity investments",
380                minimum_investment=Decimal("10000"),
381                share_classes=["A", "I", "C"]
382            ),
383            Fund(
384                fund_id="ETF001",
385                fund_name="Technology Sector ETF",
386                fund_type=FundType.ETF,
387                asset_class=AssetClass.EQUITY,
388                inception_date=date(2015, 6, 1),
389                base_currency="USD",
390                expense_ratio=Decimal("0.0025"),
391                management_fee=Decimal("0.0020"),
392                benchmark_id="BENCH002",
393                nav_frequency="DAILY",
394                is_active=True,
395                regulatory_classification="40_ACT",
396                investment_objective="Track the performance of technology sector stocks",
397                minimum_investment=Decimal("1"),
398                share_classes=["ETF"]
399            ),
400            Fund(
401                fund_id="FUND002",
402                fund_name="International Bond Fund",
403                fund_type=FundType.MUTUAL_FUND,
404                asset_class=AssetClass.FIXED_INCOME,
405                inception_date=date(2012, 3, 20),
406                base_currency="USD",
407                expense_ratio=Decimal("0.0060"),
408                management_fee=Decimal("0.0040"),
409                benchmark_id="BENCH003",
410                nav_frequency="DAILY",
411                is_active=True,
412                regulatory_classification="40_ACT",
413                investment_objective="Income generation through international fixed income securities",
414                minimum_investment=Decimal("5000"),
415                share_classes=["A", "I"]
416            )
417        ]
418    
419    def _load_share_classes(self) -> List[ShareClass]:
420        """Load share class data"""
421        return [
422            ShareClass(
423                share_class_id="FUND001_A",
424                fund_id="FUND001",
425                class_name="Class A",
426                ticker_symbol="GEGRX",
427                isin="US12345678901",
428                cusip="123456789",
429                expense_ratio=Decimal("0.0100"),
430                management_fee=Decimal("0.0050"),
431                distribution_fee=Decimal("0.0025"),
432                load_front=Decimal("0.0575"),
433                load_back=Decimal("0.0000"),
434                minimum_investment=Decimal("10000"),
435                currency="USD",
436                is_active=True
437            ),
438            ShareClass(
439                share_class_id="FUND001_I",
440                fund_id="FUND001",
441                class_name="Institutional",
442                ticker_symbol="GEGIX",
443                isin="US12345678902",
444                cusip="123456790",
445                expense_ratio=Decimal("0.0075"),
446                management_fee=Decimal("0.0050"),
447                distribution_fee=Decimal("0.0000"),
448                load_front=Decimal("0.0000"),
449                load_back=Decimal("0.0000"),
450                minimum_investment=Decimal("1000000"),
451                currency="USD",
452                is_active=True
453            ),
454            ShareClass(
455                share_class_id="ETF001_ETF",
456                fund_id="ETF001",
457                class_name="ETF Shares",
458                ticker_symbol="TECH",
459                isin="US12345678903",
460                cusip="123456791",
461                expense_ratio=Decimal("0.0025"),
462                management_fee=Decimal("0.0020"),
463                distribution_fee=Decimal("0.0000"),
464                load_front=Decimal("0.0000"),
465                load_back=Decimal("0.0000"),
466                minimum_investment=Decimal("1"),
467                currency="USD",
468                is_active=True
469            )
470        ]
471    
472    def _load_benchmarks(self) -> List[Benchmark]:
473        """Load benchmark data"""
474        return [
475            Benchmark(
476                benchmark_id="BENCH001",
477                benchmark_name="MSCI World Index",
478                provider="MSCI",
479                asset_class=AssetClass.EQUITY,
480                currency="USD",
481                pricing_source=PricingSource.MSCI,
482                calculation_method="MARKET_CAP_WEIGHTED",
483                is_active=True,
484                constituent_count=1500
485            ),
486            Benchmark(
487                benchmark_id="BENCH002",
488                benchmark_name="NASDAQ Technology Index",
489                provider="NASDAQ",
490                asset_class=AssetClass.EQUITY,
491                currency="USD",
492                pricing_source=PricingSource.BLOOMBERG,
493                calculation_method="MARKET_CAP_WEIGHTED",
494                is_active=True,
495                constituent_count=100
496            ),
497            Benchmark(
498                benchmark_id="BENCH003",
499                benchmark_name="Bloomberg Global Aggregate Bond Index",
500                provider="Bloomberg",
501                asset_class=AssetClass.FIXED_INCOME,
502                currency="USD",
503                pricing_source=PricingSource.BLOOMBERG,
504                calculation_method="MARKET_VALUE_WEIGHTED",
505                is_active=True,
506                constituent_count=25000
507            )
508        ]
509    
510    def _load_security_master(self) -> List[SecurityMaster]:
511        """Load security master data"""
512        return [
513            SecurityMaster(
514                security_id="SEC001",
515                security_name="Apple Inc.",
516                asset_class=AssetClass.EQUITY,
517                security_type="COMMON_STOCK",
518                currency="USD",
519                country_of_risk="US",
520                sector="Technology",
521                industry="Technology Hardware",
522                pricing_source=PricingSource.BLOOMBERG,
523                exchange="NASDAQ",
524                is_active=True,
525                identifiers={
526                    "ISIN": "US0378331005",
527                    "CUSIP": "037833100",
528                    "TICKER": "AAPL",
529                    "SEDOL": "2046251"
530                }
531            ),
532            SecurityMaster(
533                security_id="SEC002",
534                security_name="US Treasury 2.5% 2030",
535                asset_class=AssetClass.FIXED_INCOME,
536                security_type="GOVERNMENT_BOND",
537                currency="USD",
538                country_of_risk="US",
539                sector="Government",
540                industry="Treasury",
541                pricing_source=PricingSource.BLOOMBERG,
542                exchange=None,
543                is_active=True,
544                identifiers={
545                    "ISIN": "US912828XG55",
546                    "CUSIP": "912828XG5",
547                    "TICKER": "T 2.5 08/15/30"
548                }
549            ),
550            SecurityMaster(
551                security_id="SEC003",
552                security_name="Microsoft Corporation",
553                asset_class=AssetClass.EQUITY,
554                security_type="COMMON_STOCK",
555                currency="USD",
556                country_of_risk="US",
557                sector="Technology",
558                industry="Software",
559                pricing_source=PricingSource.BLOOMBERG,
560                exchange="NASDAQ",
561                is_active=True,
562                identifiers={
563                    "ISIN": "US5949181045",
564                    "CUSIP": "594918104",
565                    "TICKER": "MSFT",
566                    "SEDOL": "2588173"
567                }
568            )
569        ]
570    
571    def _load_pricing_rules(self) -> List[PricingRule]:
572        """Load pricing rules"""
573        return [
574            PricingRule(
575                rule_id="RULE001",
576                security_id="SEC001",
577                pricing_source=PricingSource.BLOOMBERG,
578                pricing_method="MARKET",
579                validation_rules=["STALE_PRICE_CHECK", "PRICE_VARIANCE_CHECK"],
580                fallback_sources=["REUTERS", "FACTSET"],
581                stale_price_threshold_hours=24,
582                is_active=True
583            ),
584            PricingRule(
585                rule_id="RULE002",
586                security_id="SEC002",
587                pricing_source=PricingSource.BLOOMBERG,
588                pricing_method="MATRIX",
589                validation_rules=["YIELD_CURVE_CHECK", "CREDIT_SPREAD_CHECK"],
590                fallback_sources=["REUTERS"],
591                stale_price_threshold_hours=24,
592                is_active=True
593            ),
594            PricingRule(
595                rule_id="RULE003",
596                security_id="SEC003",
597                pricing_source=PricingSource.BLOOMBERG,
598                pricing_method="MARKET",
599                validation_rules=["STALE_PRICE_CHECK", "VOLUME_CHECK"],
600                fallback_sources=["REUTERS", "FACTSET"],
601                stale_price_threshold_hours=24,
602                is_active=True
603            )
604        ]
605    
606    def _load_fund_restrictions(self) -> List[Dict]:
607        """Load fund investment restrictions"""
608        return [
609            {
610                "fund_id": "FUND001",
611                "allowed_asset_classes": ["EQUITY"],
612                "max_single_security_weight": 5.0,
613                "max_sector_weight": 25.0,
614                "max_country_weight": 30.0,
615                "min_holdings": 50,
616                "max_holdings": 200,
617                "liquidity_requirements": {
618                    "min_daily_liquidity_pct": 10.0,
619                    "max_illiquid_securities_pct": 15.0
620                }
621            },
622            {
623                "fund_id": "ETF001",
624                "allowed_asset_classes": ["EQUITY"],
625                "max_single_security_weight": 25.0,
626                "max_sector_weight": 100.0,
627                "sector_focus": "Technology",
628                "tracking_error_limit": 0.50,
629                "replication_method": "FULL"
630            },
631            {
632                "fund_id": "FUND002",
633                "allowed_asset_classes": ["FIXED_INCOME"],
634                "max_single_security_weight": 5.0,
635                "min_credit_quality": "BBB",
636                "max_duration": 10.0,
637                "currency_hedging": True,
638                "geographic_focus": "INTERNATIONAL_EX_US"
639            }
640        ]
641
642# Server startup
643async def main():
644    server_instance = FundAccountingMCPServer()
645    
646    async with stdio_server() as (read_stream, write_stream):
647        await server_instance.server.run(
648            read_stream,
649            write_stream,
650            server_instance.server.create_initialization_options()
651        )
652
653if __name__ == "__main__":
654    asyncio.run(main())

Java Implementation

MCP Server in Java

JAVA
1package com.investment.fund.mcp;
2
3import com.fasterxml.jackson.databind.ObjectMapper;
4import com.fasterxml.jackson.databind.node.ArrayNode;
5import com.fasterxml.jackson.databind.node.ObjectNode;
6import java.math.BigDecimal;
7import java.time.LocalDate;
8import java.util.*;
9import java.util.stream.Collectors;
10
11public class FundAccountingMCPServer {
12    
13    private final ObjectMapper objectMapper = new ObjectMapper();
14    private final List<Fund> funds;
15    private final List<ShareClass> shareClasses;
16    private final List<Benchmark> benchmarks;
17    private final List<SecurityMaster> securityMaster;
18    private final List<PricingRule> pricingRules;
19    
20    public FundAccountingMCPServer() {
21        this.funds = loadFunds();
22        this.shareClasses = loadShareClasses();
23        this.benchmarks = loadBenchmarks();
24        this.securityMaster = loadSecurityMaster();
25        this.pricingRules = loadPricingRules();
26    }
27    
28    // Data Models
29    public static class Fund {
30        public String fundId;
31        public String fundName;
32        public FundType fundType;
33        public AssetClass assetClass;
34        public LocalDate inceptionDate;
35        public String baseCurrency;
36        public BigDecimal expenseRatio;
37        public BigDecimal managementFee;
38        public String benchmarkId;
39        public String navFrequency;
40        public boolean isActive;
41        public String regulatoryClassification;
42        public String investmentObjective;
43        public BigDecimal minimumInvestment;
44        public List<String> shareClasses;
45        
46        public Fund(String fundId, String fundName, FundType fundType, AssetClass assetClass,
47                   LocalDate inceptionDate, String baseCurrency, BigDecimal expenseRatio,
48                   BigDecimal managementFee, String benchmarkId, String navFrequency,
49                   boolean isActive, String regulatoryClassification, String investmentObjective,
50                   BigDecimal minimumInvestment, List<String> shareClasses) {
51            this.fundId = fundId;
52            this.fundName = fundName;
53            this.fundType = fundType;
54            this.assetClass = assetClass;
55            this.inceptionDate = inceptionDate;
56            this.baseCurrency = baseCurrency;
57            this.expenseRatio = expenseRatio;
58            this.managementFee = managementFee;
59            this.benchmarkId = benchmarkId;
60            this.navFrequency = navFrequency;
61            this.isActive = isActive;
62            this.regulatoryClassification = regulatoryClassification;
63            this.investmentObjective = investmentObjective;
64            this.minimumInvestment = minimumInvestment;
65            this.shareClasses = shareClasses;
66        }
67    }
68    
69    public static class ShareClass {
70        public String shareClassId;
71        public String fundId;
72        public String className;
73        public String tickerSymbol;
74        public String isin;
75        public String cusip;
76        public BigDecimal expenseRatio;
77        public BigDecimal managementFee;
78        public BigDecimal distributionFee;
79        public BigDecimal loadFront;
80        public BigDecimal loadBack;
81        public BigDecimal minimumInvestment;
82        public String currency;
83        public boolean isActive;
84        
85        public ShareClass(String shareClassId, String fundId, String className, String tickerSymbol,
86                         String isin, String cusip, BigDecimal expenseRatio, BigDecimal managementFee,
87                         BigDecimal distributionFee, BigDecimal loadFront, BigDecimal loadBack,
88                         BigDecimal minimumInvestment, String currency, boolean isActive) {
89            this.shareClassId = shareClassId;
90            this.fundId = fundId;
91            this.className = className;
92            this.tickerSymbol = tickerSymbol;
93            this.isin = isin;
94            this.cusip = cusip;
95            this.expenseRatio = expenseRatio;
96            this.managementFee = managementFee;
97            this.distributionFee = distributionFee;
98            this.loadFront = loadFront;
99            this.loadBack = loadBack;
100            this.minimumInvestment = minimumInvestment;
101            this.currency = currency;
102            this.isActive = isActive;
103        }
104    }
105    
106    public static class Benchmark {
107        public String benchmarkId;
108        public String benchmarkName;
109        public String provider;
110        public AssetClass assetClass;
111        public String currency;
112        public PricingSource pricingSource;
113        public String calculationMethod;
114        public boolean isActive;
115        public Integer constituentCount;
116        
117        public Benchmark(String benchmarkId, String benchmarkName, String provider,
118                        AssetClass assetClass, String currency, PricingSource pricingSource,
119                        String calculationMethod, boolean isActive, Integer constituentCount) {
120            this.benchmarkId = benchmarkId;
121            this.benchmarkName = benchmarkName;
122            this.provider = provider;
123            this.assetClass = assetClass;
124            this.currency = currency;
125            this.pricingSource = pricingSource;
126            this.calculationMethod = calculationMethod;
127            this.isActive = isActive;
128            this.constituentCount = constituentCount;
129        }
130    }
131    
132    public static class SecurityMaster {
133        public String securityId;
134        public String securityName;
135        public AssetClass assetClass;
136        public String securityType;
137        public String currency;
138        public String countryOfRisk;
139        public String sector;
140        public String industry;
141        public PricingSource pricingSource;
142        public String exchange;
143        public boolean isActive;
144        public Map<String, String> identifiers;
145        
146        public SecurityMaster(String securityId, String securityName, AssetClass assetClass,
147                             String securityType, String currency, String countryOfRisk,
148                             String sector, String industry, PricingSource pricingSource,
149                             String exchange, boolean isActive, Map<String, String> identifiers) {
150            this.securityId = securityId;
151            this.securityName = securityName;
152            this.assetClass = assetClass;
153            this.securityType = securityType;
154            this.currency = currency;
155            this.countryOfRisk = countryOfRisk;
156            this.sector = sector;
157            this.industry = industry;
158            this.pricingSource = pricingSource;
159            this.exchange = exchange;
160            this.isActive = isActive;
161            this.identifiers = identifiers;
162        }
163    }
164    
165    public static class PricingRule {
166        public String ruleId;
167        public String securityId;
168        public PricingSource pricingSource;
169        public String pricingMethod;
170        public List<String> validationRules;
171        public List<String> fallbackSources;
172        public int stalePriceThresholdHours;
173        public boolean isActive;
174        
175        public PricingRule(String ruleId, String securityId, PricingSource pricingSource,
176                          String pricingMethod, List<String> validationRules,
177                          List<String> fallbackSources, int stalePriceThresholdHours,
178                          boolean isActive) {
179            this.ruleId = ruleId;
180            this.securityId = securityId;
181            this.pricingSource = pricingSource;
182            this.pricingMethod = pricingMethod;
183            this.validationRules = validationRules;
184            this.fallbackSources = fallbackSources;
185            this.stalePriceThresholdHours = stalePriceThresholdHours;
186            this.isActive = isActive;
187        }
188    }
189    
190    public enum FundType {
191        MUTUAL_FUND, ETF, CLOSED_END_FUND, HEDGE_FUND, MONEY_MARKET
192    }
193    
194    public enum AssetClass {
195        EQUITY, FIXED_INCOME, ALTERNATIVE, CASH, COMMODITY, REAL_ESTATE
196    }
197    
198    public enum PricingSource {
199        BLOOMBERG, REUTERS, FACTSET, MSCI, VENDOR_SPECIFIC
200    }
201    
202    // MCP Protocol Handlers
203    public Object handleListResources() {
204        ObjectNode response = objectMapper.createObjectNode();
205        ArrayNode resources = objectMapper.createArrayNode();
206        
207        resources.add(createResource(
208            "funds://fund-master",
209            "Fund Master",
210            "application/json",
211            "Complete fund master data with specifications and parameters"
212        ));
213        
214        resources.add(createResource(
215            "funds://share-classes",
216            "Share Classes",
217            "application/json",
218            "Share class details with fees and minimums"
219        ));
220        
221        resources.add(createResource(
222            "funds://benchmarks",
223            "Benchmark Indices",
224            "application/json",
225            "Benchmark and index reference data"
226        ));
227        
228        resources.add(createResource(
229            "funds://security-master",
230            "Security Master",
231            "application/json",
232            "Security reference data with classifications"
233        ));
234        
235        resources.add(createResource(
236            "funds://pricing-rules",
237            "Pricing Rules",
238            "application/json",
239            "Security pricing methodology and validation rules"
240        ));
241        
242        response.set("resources", resources);
243        return response;
244    }
245    
246    public Object handleGetResource(String uri) throws Exception {
247        switch (uri) {
248            case "funds://fund-master":
249                return objectMapper.writeValueAsString(funds);
250            case "funds://share-classes":
251                return objectMapper.writeValueAsString(shareClasses);
252            case "funds://benchmarks":
253                return objectMapper.writeValueAsString(benchmarks);
254            case "funds://security-master":
255                return objectMapper.writeValueAsString(securityMaster);
256            case "funds://pricing-rules":
257                return objectMapper.writeValueAsString(pricingRules);
258            default:
259                throw new IllegalArgumentException("Unknown resource: " + uri);
260        }
261    }
262    
263    public Object handleListTools() {
264        ObjectNode response = objectMapper.createObjectNode();
265        ArrayNode tools = objectMapper.createArrayNode();
266        
267        // Validate Fund Trade Tool
268        ObjectNode validateTradeTool = objectMapper.createObjectNode();
269        validateTradeTool.put("name", "validate_fund_trade");
270        validateTradeTool.put("description", "Validate if a trade complies with fund restrictions and parameters");
271        
272        ObjectNode validateTradeSchema = objectMapper.createObjectNode();
273        validateTradeSchema.put("type", "object");
274        ObjectNode validateTradeProps = objectMapper.createObjectNode();
275        validateTradeProps.set("fund_id", objectMapper.createObjectNode().put("type", "string"));
276        validateTradeProps.set("security_id", objectMapper.createObjectNode().put("type", "string"));
277        validateTradeProps.set("quantity", objectMapper.createObjectNode().put("type", "number"));
278        
279        ObjectNode tradeTypeEnum = objectMapper.createObjectNode();
280        tradeTypeEnum.put("type", "string");
281        ArrayNode tradeTypeOptions = objectMapper.createArrayNode();
282        tradeTypeOptions.add("BUY");
283        tradeTypeOptions.add("SELL");
284        tradeTypeEnum.set("enum", tradeTypeOptions);
285        validateTradeProps.set("trade_type", tradeTypeEnum);
286        
287        validateTradeProps.set("trade_amount", objectMapper.createObjectNode().put("type", "number"));
288        validateTradeSchema.set("properties", validateTradeProps);
289        
290        ArrayNode validateTradeRequired = objectMapper.createArrayNode();
291        validateTradeRequired.add("fund_id");
292        validateTradeRequired.add("security_id");
293        validateTradeRequired.add("quantity");
294        validateTradeRequired.add("trade_type");
295        validateTradeSchema.set("required", validateTradeRequired);
296        validateTradeTool.set("inputSchema", validateTradeSchema);
297        
298        tools.add(validateTradeTool);
299        
300        // Get Fund Benchmark Tool
301        ObjectNode benchmarkTool = objectMapper.createObjectNode();
302        benchmarkTool.put("name", "get_fund_benchmark");
303        benchmarkTool.put("description", "Get benchmark information for a specific fund");
304        
305        ObjectNode benchmarkSchema = objectMapper.createObjectNode();
306        benchmarkSchema.put("type", "object");
307        ObjectNode benchmarkProps = objectMapper.createObjectNode();
308        benchmarkProps.set("fund_id", objectMapper.createObjectNode().put("type", "string"));
309        benchmarkSchema.set("properties", benchmarkProps);
310        
311        ArrayNode benchmarkRequired = objectMapper.createArrayNode();
312        benchmarkRequired.add("fund_id");
313        benchmarkSchema.set("required", benchmarkRequired);
314        benchmarkTool.set("inputSchema", benchmarkSchema);
315        
316        tools.add(benchmarkTool);
317        
318        // Lookup Security Details Tool
319        ObjectNode securityTool = objectMapper.createObjectNode();
320        securityTool.put("name", "lookup_security_details");
321        securityTool.put("description", "Get detailed security information including identifiers and classifications");
322        
323        ObjectNode securitySchema = objectMapper.createObjectNode();
324        securitySchema.put("type", "object");
325        ObjectNode securityProps = objectMapper.createObjectNode();
326        securityProps.set("identifier", objectMapper.createObjectNode().put("type", "string"));
327        
328        ObjectNode identifierTypeEnum = objectMapper.createObjectNode();
329        identifierTypeEnum.put("type", "string");
330        ArrayNode identifierTypeOptions = objectMapper.createArrayNode();
331        identifierTypeOptions.add("ISIN");
332        identifierTypeOptions.add("CUSIP");
333        identifierTypeOptions.add("SEDOL");
334        identifierTypeOptions.add("TICKER");
335        identifierTypeOptions.add("INTERNAL_ID");
336        identifierTypeEnum.set("enum", identifierTypeOptions);
337        securityProps.set("identifier_type", identifierTypeEnum);
338        
339        securitySchema.set("properties", securityProps);
340        
341        ArrayNode securityRequired = objectMapper.createArrayNode();
342        securityRequired.add("identifier");
343        securityRequired.add("identifier_type");
344        securitySchema.set("required", securityRequired);
345        securityTool.set("inputSchema", securitySchema);
346        
347        tools.add(securityTool);
348        
349        response.set("tools", tools);
350        return response;
351    }
352    
353    public Object handleCallTool(String toolName, Map<String, Object> arguments) throws Exception {
354        switch (toolName) {
355            case "validate_fund_trade":
356                return validateFundTrade(arguments);
357            case "get_fund_benchmark":
358                return getFundBenchmark(arguments);
359            case "lookup_security_details":
360                return lookupSecurityDetails(arguments);
361            default:
362                throw new IllegalArgumentException("Unknown tool: " + toolName);
363        }
364    }
365    
366    // Tool Implementations
367    private Object validateFundTrade(Map<String, Object> args) {
368        String fundId = (String) args.get("fund_id");
369        String securityId = (String) args.get("security_id");
370        Double quantity = (Double) args.get("quantity");
371        String tradeType = (String) args.get("trade_type");
372        
373        ObjectNode result = objectMapper.createObjectNode();
374        
375        // Find fund
376        Fund fund = funds.stream()
377            .filter(f -> f.fundId.equals(fundId))
378            .findFirst()
379            .orElse(null);
380        
381        if (fund == null) {
382            result.put("valid", false);
383            result.put("error", "Fund " + fundId + " not found");
384            return result;
385        }
386        
387        // Find security
388        SecurityMaster security = securityMaster.stream()
389            .filter(s -> s.securityId.equals(securityId))
390            .findFirst()
391            .orElse(null);
392        
393        if (security == null) {
394            result.put("valid", false);
395            result.put("error", "Security " + securityId + " not found");
396            return result;
397        }
398        
399        result.put("valid", true);
400        result.set("fund", objectMapper.valueToTree(fund));
401        result.set("security", objectMapper.valueToTree(security));
402        
403        ArrayNode validations = objectMapper.createArrayNode();
404        ArrayNode warnings = objectMapper.createArrayNode();
405        
406        // Asset class validation
407        if (!security.assetClass.equals(fund.assetClass)) {
408            warnings.add("Asset class mismatch: Security is " + security.assetClass + 
409                        ", Fund focuses on " + fund.assetClass);
410        }
411        
412        // Currency validation
413        if (!security.currency.equals(fund.baseCurrency)) {
414            warnings.add("Currency mismatch: Security in " + security.currency + 
415                        ", Fund base currency " + fund.baseCurrency);
416        }
417        
418        result.set("validations", validations);
419        result.set("warnings", warnings);
420        
421        return result;
422    }
423    
424    private Object getFundBenchmark(Map<String, Object> args) {
425        String fundId = (String) args.get("fund_id");
426        
427        Fund fund = funds.stream()
428            .filter(f -> f.fundId.equals(fundId))
429            .findFirst()
430            .orElse(null);
431        
432        if (fund == null) {
433            ObjectNode error = objectMapper.createObjectNode();
434            error.put("error", "Fund " + fundId + " not found");
435            return error;
436        }
437        
438        Benchmark benchmark = benchmarks.stream()
439            .filter(b -> b.benchmarkId.equals(fund.benchmarkId))
440            .findFirst()
441            .orElse(null);
442        
443        if (benchmark == null) {
444            ObjectNode error = objectMapper.createObjectNode();
445            error.put("error", "Benchmark " + fund.benchmarkId + " not found for fund " + fundId);
446            return error;
447        }
448        
449        ObjectNode result = objectMapper.createObjectNode();
450        result.put("fund_id", fundId);
451        result.put("fund_name", fund.fundName);
452        result.set("benchmark", objectMapper.valueToTree(benchmark));
453        
454        return result;
455    }
456    
457    private Object lookupSecurityDetails(Map<String, Object> args) {
458        String identifier = (String) args.get("identifier");
459        String identifierType = (String) args.get("identifier_type");
460        
461        SecurityMaster security = null;
462        
463        if ("INTERNAL_ID".equals(identifierType)) {
464            security = securityMaster.stream()
465                .filter(s -> s.securityId.equals(identifier))
466                .findFirst()
467                .orElse(null);
468        } else {
469            security = securityMaster.stream()
470                .filter(s -> s.identifiers.containsValue(identifier))
471                .findFirst()
472                .orElse(null);
473        }
474        
475        ObjectNode result = objectMapper.createObjectNode();
476        
477        if (security == null) {
478            result.put("found", false);
479            result.put("message", "Security not found for " + identifierType + ": " + identifier);
480            return result;
481        }
482        
483        // Find pricing rule
484        PricingRule pricingRule = pricingRules.stream()
485            .filter(pr -> pr.securityId.equals(security.securityId))
486            .findFirst()
487            .orElse(null);
488        
489        result.put("found", true);
490        result.set("security", objectMapper.valueToTree(security));
491        if (pricingRule != null) {
492            result.set("pricing_rule", objectMapper.valueToTree(pricingRule));
493        }
494        
495        return result;
496    }
497    
498    // Helper Methods
499    private ObjectNode createResource(String uri, String name, String mimeType, String description) {
500        ObjectNode resource = objectMapper.createObjectNode();
501        resource.put("uri", uri);
502        resource.put("name", name);
503        resource.put("mimeType", mimeType);
504        resource.put("description", description);
505        return resource;
506    }
507    
508    // Data Loading Methods
509    private List<Fund> loadFunds() {
510        return Arrays.asList(
511            new Fund("FUND001", "Global Equity Growth Fund", FundType.MUTUAL_FUND, AssetClass.EQUITY,
512                    LocalDate.of(2010, 1, 15), "USD", new BigDecimal("0.0075"), 
513                    new BigDecimal("0.0050"), "BENCH001", "DAILY", true, "40_ACT",
514                    "Long-term capital growth through global equity investments", 
515                    new BigDecimal("10000"), Arrays.asList("A", "I", "C")),
516            
517            new Fund("ETF001", "Technology Sector ETF", FundType.ETF, AssetClass.EQUITY,
518                    LocalDate.of(2015, 6, 1), "USD", new BigDecimal("0.0025"),
519                    new BigDecimal("0.0020"), "BENCH002", "DAILY", true, "40_ACT",
520                    "Track the performance of technology sector stocks",
521                    new BigDecimal("1"), Arrays.asList("ETF")),
522            
523            new Fund("FUND002", "International Bond Fund", FundType.MUTUAL_FUND, AssetClass.FIXED_INCOME,
524                    LocalDate.of(2012, 3, 20), "USD", new BigDecimal("0.0060"),
525                    new BigDecimal("0.0040"), "BENCH003", "DAILY", true, "40_ACT",
526                    "Income generation through international fixed income securities",
527                    new BigDecimal("5000"), Arrays.asList("A", "I"))
528        );
529    }
530    
531    private List<ShareClass> loadShareClasses() {
532        return Arrays.asList(
533            new ShareClass("FUND001_A", "FUND001", "Class A", "GEGRX", "US12345678901", "123456789",
534                          new BigDecimal("0.0100"), new BigDecimal("0.0050"), new BigDecimal("0.0025"),
535                          new BigDecimal("0.0575"), new BigDecimal("0.0000"), new BigDecimal("10000"),
536                          "USD", true),
537            
538            new ShareClass("FUND001_I", "FUND001", "Institutional", "GEGIX", "US12345678902", "123456790",
539                          new BigDecimal("0.0075"), new BigDecimal("0.0050"), new BigDecimal("0.0000"),
540                          new BigDecimal("0.0000"), new BigDecimal("0.0000"), new BigDecimal("1000000"),
541                          "USD", true),
542            
543            new ShareClass("ETF001_ETF", "ETF001", "ETF Shares", "TECH", "US12345678903", "123456791",
544                          new BigDecimal("0.0025"), new BigDecimal("0.0020"), new BigDecimal("0.0000"),
545                          new BigDecimal("0.0000"), new BigDecimal("0.0000"), new BigDecimal("1"),
546                          "USD", true)
547        );
548    }
549    
550    private List<Benchmark> loadBenchmarks() {
551        return Arrays.asList(
552            new Benchmark("BENCH001", "MSCI World Index", "MSCI", AssetClass.EQUITY, "USD",
553                         PricingSource.MSCI, "MARKET_CAP_WEIGHTED", true, 1500),
554            
555            new Benchmark("BENCH002", "NASDAQ Technology Index", "NASDAQ", AssetClass.EQUITY, "USD",
556                         PricingSource.BLOOMBERG, "MARKET_CAP_WEIGHTED", true, 100),
557            
558            new Benchmark("BENCH003", "Bloomberg Global Aggregate Bond Index", "Bloomberg", 
559                         AssetClass.FIXED_INCOME, "USD", PricingSource.BLOOMBERG, 
560                         "MARKET_VALUE_WEIGHTED", true, 25000)
561        );
562    }
563    
564    private List<SecurityMaster> loadSecurityMaster() {
565        return Arrays.asList(
566            new SecurityMaster("SEC001", "Apple Inc.", AssetClass.EQUITY, "COMMON_STOCK", "USD", "US",
567                              "Technology", "Technology Hardware", PricingSource.BLOOMBERG, "NASDAQ",
568                              true, Map.of("ISIN", "US0378331005", "CUSIP", "037833100", 
569                                          "TICKER", "AAPL", "SEDOL", "2046251")),
570            
571            new SecurityMaster("SEC002", "US Treasury 2.5% 2030", AssetClass.FIXED_INCOME, "GOVERNMENT_BOND",
572                              "USD", "US", "Government", "Treasury", PricingSource.BLOOMBERG, null,
573                              true, Map.of("ISIN", "US912828XG55", "CUSIP", "912828XG5",
574                                          "TICKER", "T 2.5 08/15/30")),
575            
576            new SecurityMaster("SEC003", "Microsoft Corporation", AssetClass.EQUITY, "COMMON_STOCK",
577                              "USD", "US", "Technology", "Software", PricingSource.BLOOMBERG, "NASDAQ",
578                              true, Map.of("ISIN", "US5949181045", "CUSIP", "594918104",
579                                          "TICKER", "MSFT", "SEDOL", "2588173"))
580        );
581    }
582    
583    private List<PricingRule> loadPricingRules() {
584        return Arrays.asList(
585            new PricingRule("RULE001", "SEC001", PricingSource.BLOOMBERG, "MARKET",
586                           Arrays.asList("STALE_PRICE_CHECK", "PRICE_VARIANCE_CHECK"),
587                           Arrays.asList("REUTERS", "FACTSET"), 24, true),
588            
589            new PricingRule("RULE002", "SEC002", PricingSource.BLOOMBERG, "MATRIX",
590                           Arrays.asList("YIELD_CURVE_CHECK", "CREDIT_SPREAD_CHECK"),
591                           Arrays.asList("REUTERS"), 24, true),
592            
593            new PricingRule("RULE003", "SEC003", PricingSource.BLOOMBERG, "MARKET",
594                           Arrays.asList("STALE_PRICE_CHECK", "VOLUME_CHECK"),
595                           Arrays.asList("REUTERS", "FACTSET"), 24, true)
596        );
597    }
598}

Usage Examples for AI Agents

Fund Accounting Agent

PYTHON
1# Example of how an AI agent would use the MCP server for fund accounting
2import mcp_client
3
4async def process_fund_trade(trade_data):
5    mcp_client = MCPClient("fund-accounting-static-data")
6    
7    # Validate fund trade
8    validation_result = await mcp_client.call_tool(
9        "validate_fund_trade",
10        {
11            "fund_id": trade_data["fund_id"],
12            "security_id": trade_data["security_id"],
13            "quantity": trade_data["quantity"],
14            "trade_type": trade_data["trade_type"],
15            "trade_amount": trade_data["trade_amount"]
16        }
17    )
18    
19    if not validation_result["valid"]:
20        return {
21            "status": "error",
22            "message": validation_result["error"]
23        }
24    
25    # Get benchmark for performance attribution
26    benchmark_result = await mcp_client.call_tool(
27        "get_fund_benchmark",
28        {"fund_id": trade_data["fund_id"]}
29    )
30    
31    # Get detailed security information
32    security_details = await mcp_client.call_tool(
33        "lookup_security_details",
34        {
35            "identifier": trade_data["security_id"],
36            "identifier_type": "INTERNAL_ID"
37        }
38    )
39    
40    return {
41        "status": "validated",
42        "fund_info": validation_result["fund"],
43        "security_info": security_details["security"],
44        "benchmark": benchmark_result["benchmark"],
45        "warnings": validation_result.get("warnings", []),
46        "pricing_rule": security_details.get("pricing_rule")
47    }
48
49async def calculate_fund_performance(fund_id, start_date, end_date):
50    mcp_client = MCPClient("fund-accounting-static-data")
51    
52    # Get fund benchmark
53    benchmark_result = await mcp_client.call_tool(
54        "get_fund_benchmark",
55        {"fund_id": fund_id}
56    )
57    
58    # Calculate fund metrics
59    metrics_result = await mcp_client.call_tool(
60        "calculate_fund_metrics",
61        {
62            "fund_id": fund_id,
63            "calculation_date": end_date,
64            "metrics": ["expense_ratio", "total_net_assets", "number_of_holdings"]
65        }
66    )
67    
68    return {
69        "fund_id": fund_id,
70        "period": f"{start_date} to {end_date}",
71        "benchmark": benchmark_result["benchmark"],
72        "fund_metrics": metrics_result["metrics"]
73    }

Production Considerations

Database Integration for Investment Data

PYTHON
1class ProductionFundAccountingMCPServer(FundAccountingMCPServer):
2    def __init__(self, db_connection):
3        self.db = db_connection
4        super().__init__()
5    
6    def _load_funds(self):
7        """Load from investment management database"""
8        query = """
9        SELECT fund_id, fund_name, fund_type, asset_class, inception_date,
10               base_currency, expense_ratio, management_fee, benchmark_id,
11               nav_frequency, is_active, regulatory_classification,
12               investment_objective, minimum_investment
13        FROM fund_master 
14        WHERE is_active = true
15        ORDER BY fund_id
16        """
17        funds = []
18        for row in self.db.execute(query):
19            # Load share classes for this fund
20            share_classes = self._load_fund_share_classes(row['fund_id'])
21            funds.append(Fund(
22                fund_id=row['fund_id'],
23                fund_name=row['fund_name'],
24                fund_type=FundType(row['fund_type']),
25                asset_class=AssetClass(row['asset_class']),
26                inception_date=row['inception_date'],
27                base_currency=row['base_currency'],
28                expense_ratio=row['expense_ratio'],
29                management_fee=row['management_fee'],
30                benchmark_id=row['benchmark_id'],
31                nav_frequency=row['nav_frequency'],
32                is_active=row['is_active'],
33                regulatory_classification=row['regulatory_classification'],
34                investment_objective=row['investment_objective'],
35                minimum_investment=row['minimum_investment'],
36                share_classes=[sc.class_name for sc in share_classes]
37            ))
38        return funds
39    
40    async def _validate_fund_trade(self, args):
41        """Enhanced validation with real-time portfolio data"""
42        validation_result = await super()._validate_fund_trade(args)
43        
44        if validation_result["valid"]:
45            # Check current portfolio position
46            current_position = await self._get_current_position(
47                args["fund_id"], args["security_id"]
48            )
49            
50            # Check fund restrictions in real-time
51            restriction_check = await self._check_investment_restrictions(
52                args["fund_id"], args["security_id"], args["quantity"]
53            )
54            
55            validation_result["current_position"] = current_position
56            validation_result["restriction_compliance"] = restriction_check
57        
58        return validation_result
59    
60    async def _get_current_position(self, fund_id, security_id):
61        """Get current portfolio position"""
62        query = """
63        SELECT quantity, market_value, weight_percent
64        FROM portfolio_positions 
65        WHERE fund_id = %s AND security_id = %s AND position_date = CURRENT_DATE
66        """
67        result = await self.db.fetch_one(query, fund_id, security_id)
68        return result if result else {"quantity": 0, "market_value": 0, "weight_percent": 0}

Risk Management Integration

PYTHON
1class RiskAwareFundAccountingMCPServer(ProductionFundAccountingMCPServer):
2    def __init__(self, db_connection, risk_service):
3        self.risk_service = risk_service
4        super().__init__(db_connection)
5    
6    async def _validate_fund_trade(self, args):
7        """Enhanced validation with risk analytics"""
8        validation_result = await super()._validate_fund_trade(args)
9        
10        if validation_result["valid"]:
11            # Calculate risk metrics impact
12            risk_impact = await self._calculate_risk_impact(
13                args["fund_id"], args["security_id"], args["quantity"], args["trade_type"]
14            )
15            
16            # Check VaR limits
17            var_check = await self._check_var_limits(args["fund_id"], risk_impact)
18            
19            # Check tracking error
20            tracking_error_check = await self._check_tracking_error(
21                args["fund_id"], risk_impact
22            )
23            
24            validation_result["risk_impact"] = risk_impact
25            validation_result["var_compliance"] = var_check
26            validation_result["tracking_error_compliance"] = tracking_error_check
27        
28        return validation_result
29    
30    async def _calculate_risk_impact(self, fund_id, security_id, quantity, trade_type):
31        """Calculate risk impact of proposed trade"""
32        return await self.risk_service.calculate_trade_impact(
33            fund_id=fund_id,
34            security_id=security_id,
35            quantity=quantity,
36            trade_type=trade_type,
37            metrics=["VAR_1D", "VAR_10D", "TRACKING_ERROR", "BETA"]
38        )

Security and Compliance

PYTHON
1class ComplianceFundAccountingMCPServer(RiskAwareFundAccountingMCPServer):
2    def __init__(self, db_connection, risk_service, compliance_service):
3        self.compliance_service = compliance_service
4        super().__init__(db_connection, risk_service)
5    
6    async def authenticate_request(self, request_context):
7        """Validate API keys and fund access permissions"""
8        api_key = request_context.get("api_key")
9        if not self.compliance_service.validate_api_key(api_key):
10            raise PermissionError("Invalid API key")
11        
12        permissions = self.compliance_service.get_permissions(api_key)
13        return permissions
14    
15    async def authorize_fund_access(self, fund_id, permissions):
16        """Check if client has access to specific fund"""
17        allowed_funds = permissions.get("allowed_funds", [])
18        if fund_id not in allowed_funds and "*" not in allowed_funds:
19            raise PermissionError(f"Access denied to fund {fund_id}")
20    
21    async def _validate_fund_trade(self, args):
22        """Enhanced validation with regulatory compliance"""
23        validation_result = await super()._validate_fund_trade(args)
24        
25        if validation_result["valid"]:
26            # Check regulatory limits (diversification, concentration, etc.)
27            regulatory_check = await self._check_regulatory_compliance(
28                args["fund_id"], args["security_id"], args["quantity"]
29            )
30            
31            # Check investment restrictions (prohibited securities, etc.)
32            restriction_check = await self._check_investment_restrictions(
33                args["fund_id"], args["security_id"]
34            )
35            
36            validation_result["regulatory_compliance"] = regulatory_check
37            validation_result["investment_restrictions"] = restriction_check
38        
39        return validation_result

Advanced Features

Real-time NAV Calculation

PYTHON
1from decimal import Decimal
2import asyncio
3from typing import Dict, List
4
5class NAVCalculationMCPServer(ComplianceFundAccountingMCPServer):
6    def __init__(self, db_connection, risk_service, compliance_service, pricing_service):
7        self.pricing_service = pricing_service
8        super().__init__(db_connection, risk_service, compliance_service)
9        
10        # Add NAV calculation tools
11        self._setup_nav_tools()
12    
13    def _setup_nav_tools(self):
14        """Add NAV-specific tools"""
15        
16        @self.server.list_tools()
17        async def enhanced_list_tools():
18            base_tools = await super().list_tools()
19            nav_tools = [
20                Tool(
21                    name="calculate_fund_nav",
22                    description="Calculate Net Asset Value for a fund",
23                    inputSchema={
24                        "type": "object",
25                        "properties": {
26                            "fund_id": {"type": "string"},
27                            "nav_date": {"type": "string", "format": "date"},
28                            "share_class": {"type": "string"}
29                        },
30                        "required": ["fund_id", "nav_date"]
31                    }
32                ),
33                Tool(
34                    name="get_fund_holdings",
35                    description="Get current fund holdings with market values",
36                    inputSchema={
37                        "type": "object",
38                        "properties": {
39                            "fund_id": {"type": "string"},
40                            "as_of_date": {"type": "string", "format": "date"}
41                        },
42                        "required": ["fund_id", "as_of_date"]
43                    }
44                ),
45                Tool(
46                    name="validate_pricing",
47                    description="Validate security pricing for NAV calculation",
48                    inputSchema={
49                        "type": "object",
50                        "properties": {
51                            "security_ids": {"type": "array", "items": {"type": "string"}},
52                            "pricing_date": {"type": "string", "format": "date"}
53                        },
54                        "required": ["security_ids", "pricing_date"]
55                    }
56                )
57            ]
58            return base_tools + nav_tools
59    
60    async def _calculate_fund_nav(self, args: Dict[str, Any]) -> List[TextContent]:
61        """Calculate fund NAV"""
62        fund_id = args["fund_id"]
63        nav_date = args["nav_date"]
64        share_class = args.get("share_class")
65        
66        try:
67            # Get fund information
68            fund = next((f for f in self.funds if f.fund_id == fund_id), None)
69            if not fund:
70                return self._create_response({
71                    "error": f"Fund {fund_id} not found"
72                })
73            
74            # Get fund holdings
75            holdings = await self._get_fund_holdings_data(fund_id, nav_date)
76            
77            # Get security prices
78            security_ids = [h["security_id"] for h in holdings]
79            prices = await self.pricing_service.get_prices(security_ids, nav_date)
80            
81            # Calculate portfolio value
82            total_market_value = Decimal("0")
83            holding_details = []
84            
85            for holding in holdings:
86                security_id = holding["security_id"]
87                quantity = Decimal(str(holding["quantity"]))
88                price = prices.get(security_id, {}).get("price", Decimal("0"))
89                
90                market_value = quantity * price
91                total_market_value += market_value
92                
93                holding_details.append({
94                    "security_id": security_id,
95                    "quantity": float(quantity),
96                    "price": float(price),
97                    "market_value": float(market_value),
98                    "weight": 0  # Will calculate after total is known
99                })
100            
101            # Calculate weights
102            for holding in holding_details:
103                if total_market_value > 0:
104                    holding["weight"] = holding["market_value"] / float(total_market_value)
105            
106            # Get fund expenses and liabilities
107            expenses = await self._get_fund_expenses(fund_id, nav_date)
108            liabilities = await self._get_fund_liabilities(fund_id, nav_date)
109            
110            # Calculate NAV
111            net_assets = total_market_value - expenses - liabilities
112            
113            # Get shares outstanding
114            if share_class:
115                shares_outstanding = await self._get_shares_outstanding(fund_id, share_class, nav_date)
116                nav_per_share = net_assets / shares_outstanding if shares_outstanding > 0 else Decimal("0")
117                
118                nav_result = {
119                    "fund_id": fund_id,
120                    "share_class": share_class,
121                    "nav_date": nav_date,
122                    "total_market_value": float(total_market_value),
123                    "expenses": float(expenses),
124                    "liabilities": float(liabilities),
125                    "net_assets": float(net_assets),
126                    "shares_outstanding": float(shares_outstanding),
127                    "nav_per_share": float(nav_per_share),
128                    "holdings": holding_details
129                }
130            else:
131                # Calculate for all share classes
132                share_classes = await self._get_fund_share_classes(fund_id)
133                nav_by_class = {}
134                
135                for sc in share_classes:
136                    shares = await self._get_shares_outstanding(fund_id, sc.class_name, nav_date)
137                    nav_per_share = net_assets / shares if shares > 0 else Decimal("0")
138                    
139                    nav_by_class[sc.class_name] = {
140                        "shares_outstanding": float(shares),
141                        "nav_per_share": float(nav_per_share)
142                    }
143                
144                nav_result = {
145                    "fund_id": fund_id,
146                    "nav_date": nav_date,
147                    "total_market_value": float(total_market_value),
148                    "expenses": float(expenses),
149                    "liabilities": float(liabilities),
150                    "net_assets": float(net_assets),
151                    "nav_by_share_class": nav_by_class,
152                    "holdings": holding_details
153                }
154            
155            return self._create_response(nav_result)
156            
157        except Exception as e:
158            return self._create_response({
159                "error": f"NAV calculation failed: {str(e)}"
160            })
161    
162    async def _get_fund_holdings_data(self, fund_id: str, as_of_date: str) -> List[Dict]:
163        """Get fund holdings from database"""
164        query = """
165        SELECT security_id, quantity, original_cost
166        FROM portfolio_positions 
167        WHERE fund_id = %s AND position_date = %s AND quantity > 0
168        """
169        return await self.db.fetch_all(query, fund_id, as_of_date)

Performance Attribution

PYTHON
1class PerformanceAttributionMCPServer(NAVCalculationMCPServer):
2    def __init__(self, db_connection, risk_service, compliance_service, pricing_service, attribution_service):
3        self.attribution_service = attribution_service
4        super().__init__(db_connection, risk_service, compliance_service, pricing_service)
5        self._setup_attribution_tools()
6    
7    def _setup_attribution_tools(self):
8        """Add performance attribution tools"""
9        
10        @self.server.list_tools()
11        async def enhanced_list_tools():
12            base_tools = await super().list_tools()
13            attribution_tools = [
14                Tool(
15                    name="calculate_performance_attribution",
16                    description="Calculate performance attribution vs benchmark",
17                    inputSchema={
18                        "type": "object",
19                        "properties": {
20                            "fund_id": {"type": "string"},
21                            "start_date": {"type": "string", "format": "date"},
22                            "end_date": {"type": "string", "format": "date"},
23                            "attribution_method": {"type": "string", "enum": ["BRINSON", "FAMA_FRENCH", "CUSTOM"]}
24                        },
25                        "required": ["fund_id", "start_date", "end_date"]
26                    }
27                ),
28                Tool(
29                    name="calculate_fund_returns",
30                    description="Calculate fund returns over specified period",
31                    inputSchema={
32                        "type": "object",
33                        "properties": {
34                            "fund_id": {"type": "string"},
35                            "start_date": {"type": "string", "format": "date"},
36                            "end_date": {"type": "string", "format": "date"},
37                            "return_frequency": {"type": "string", "enum": ["DAILY", "MONTHLY", "QUARTERLY"]}
38                        },
39                        "required": ["fund_id", "start_date", "end_date"]
40                    }
41                )
42            ]
43            return base_tools + attribution_tools
44    
45    async def _calculate_performance_attribution(self, args: Dict[str, Any]) -> List[TextContent]:
46        """Calculate performance attribution analysis"""
47        fund_id = args["fund_id"]
48        start_date = args["start_date"]
49        end_date = args["end_date"]
50        attribution_method = args.get("attribution_method", "BRINSON")
51        
52        try:
53            # Get fund and benchmark information
54            fund = next((f for f in self.funds if f.fund_id == fund_id), None)
55            if not fund:
56                return self._create_response({"error": f"Fund {fund_id} not found"})
57            
58            benchmark = next((b for b in self.benchmarks if b.benchmark_id == fund.benchmark_id), None)
59            if not benchmark:
60                return self._create_response({"error": f"Benchmark {fund.benchmark_id} not found"})
61            
62            # Calculate fund returns
63            fund_returns = await self._calculate_period_returns(fund_id, start_date, end_date)
64            
65            # Get benchmark returns
66            benchmark_returns = await self._get_benchmark_returns(fund.benchmark_id, start_date, end_date)
67            
68            # Calculate attribution components
69            attribution_result = await self.attribution_service.calculate_attribution(
70                fund_id=fund_id,
71                benchmark_id=fund.benchmark_id,
72                start_date=start_date,
73                end_date=end_date,
74                method=attribution_method
75            )
76            
77            result = {
78                "fund_id": fund_id,
79                "benchmark_id": fund.benchmark_id,
80                "period": f"{start_date} to {end_date}",
81                "fund_return": fund_returns["total_return"],
82                "benchmark_return": benchmark_returns["total_return"],
83                "excess_return": fund_returns["total_return"] - benchmark_returns["total_return"],
84                "attribution_method": attribution_method,
85                "attribution_analysis": attribution_result
86            }
87            
88            return self._create_response(result)
89            
90        except Exception as e:
91            return self._create_response({
92                "error": f"Performance attribution calculation failed: {str(e)}"
93            })

Testing Strategy

Unit Tests for Fund Accounting

PYTHON
1import pytest
2import asyncio
3from decimal import Decimal
4from datetime import date
5from unittest.mock import Mock, patch
6from fund_accounting_mcp_server import FundAccountingMCPServer, Fund, FundType, AssetClass
7
8class TestFundAccountingMCPServer:
9    @pytest.fixture
10    def server(self):
11        return FundAccountingMCPServer()
12    
13    @pytest.fixture
14    def sample_fund(self):
15        return Fund(
16            fund_id="TEST001",
17            fund_name="Test Fund",
18            fund_type=FundType.MUTUAL_FUND,
19            asset_class=AssetClass.EQUITY,
20            inception_date=date(2020, 1, 1),
21            base_currency="USD",
22            expense_ratio=Decimal("0.0075"),
23            management_fee=Decimal("0.0050"),
24            benchmark_id="BENCH001",
25            nav_frequency="DAILY",
26            is_active=True,
27            regulatory_classification="40_ACT",
28            investment_objective="Test objective",
29            minimum_investment=Decimal("10000"),
30            share_classes=["A", "I"]
31        )
32    
33    @pytest.mark.asyncio
34    async def test_validate_fund_trade_valid(self, server):
35        """Test validation of a valid fund trade"""
36        args = {
37            "fund_id": "FUND001",
38            "security_id": "SEC001",
39            "quantity": 1000,
40            "trade_type": "BUY",
41            "trade_amount": 150000.0
42        }
43        
44        result = await server._validate_fund_trade(args)
45        result_data = json.loads(result[0].text)
46        
47        assert result_data["valid"] is True
48        assert "fund" in result_data
49        assert "security" in result_data
50        assert result_data["fund"]["fund_id"] == "FUND001"
51    
52    @pytest.mark.asyncio
53    async def test_validate_fund_trade_invalid_fund(self, server):
54        """Test validation with invalid fund ID"""
55        args = {
56            "fund_id": "INVALID",
57            "security_id": "SEC001",
58            "quantity": 1000,
59            "trade_type": "BUY"
60        }
61        
62        result = await server._validate_fund_trade(args)
63        result_data = json.loads(result[0].text)
64        
65        assert result_data["valid"] is False
66        assert "not found" in result_data["error"]
67    
68    @pytest.mark.asyncio
69    async def test_get_fund_benchmark(self, server):
70        """Test benchmark retrieval for fund"""
71        args = {"fund_id": "FUND001"}
72        
73        result = await server._get_fund_benchmark(args)
74        result_data = json.loads(result[0].text)
75        
76        assert "benchmark" in result_data
77        assert result_data["fund_id"] == "FUND001"
78        assert result_data["benchmark"]["benchmark_id"] == "BENCH001"
79    
80    @pytest.mark.asyncio
81    async def test_lookup_security_by_isin(self, server):
82        """Test security lookup by ISIN"""
83        args = {
84            "identifier": "US0378331005",
85            "identifier_type": "ISIN"
86        }
87        
88        result = await server._lookup_security_details(args)
89        result_data = json.loads(result[0].text)
90        
91        assert result_data["found"] is True
92        assert result_data["security"]["security_name"] == "Apple Inc."
93        assert result_data["security"]["identifiers"]["ISIN"] == "US0378331005"
94    
95    @pytest.mark.asyncio
96    async def test_calculate_fund_metrics(self, server):
97        """Test fund metrics calculation"""
98        args = {
99            "fund_id": "FUND001",
100            "calculation_date": "2023-12-31",
101            "metrics": ["expense_ratio", "management_fee"]
102        }
103        
104        result = await server._calculate_fund_metrics(args)
105        result_data = json.loads(result[0].text)
106        
107        assert "metrics" in result_data
108        assert "expense_ratio" in result_data["metrics"]
109        assert "management_fee" in result_data["metrics"]
110        assert result_data["metrics"]["expense_ratio"] == 0.0075

Integration Tests for Fund Operations

PYTHON
1import pytest
2import asyncio
3from mcp_test_client import MCPTestClient
4
5class TestFundAccountingMCPIntegration:
6    @pytest.fixture
7    def mcp_client(self):
8        return MCPTestClient("fund-accounting-static-data")
9    
10    @pytest.mark.asyncio
11    async def test_complete_fund_trade_workflow(self, mcp_client):
12        """Test complete fund trade validation workflow"""
13        
14        # Step 1: Validate the trade
15        validation_result = await mcp_client.call_tool(
16            "validate_fund_trade",
17            {
18                "fund_id": "FUND001",
19                "security_id": "SEC001",
20                "quantity": 500,
21                "trade_type": "BUY",
22                "trade_amount": 75000.0
23            }
24        )
25        
26        assert validation_result["valid"] is True
27        assert validation_result["fund"]["asset_class"] == "EQUITY"
28        
29        # Step 2: Get benchmark information
30        benchmark_result = await mcp_client.call_tool(
31            "get_fund_benchmark",
32            {"fund_id": "FUND001"}
33        )
34        
35        assert "benchmark" in benchmark_result
36        assert benchmark_result["benchmark"]["asset_class"] == "EQUITY"
37        
38        # Step 3: Get detailed security information
39        security_result = await mcp_client.call_tool(
40            "lookup_security_details",
41            {
42                "identifier": "SEC001",
43                "identifier_type": "INTERNAL_ID"
44            }
45        )
46        
47        assert security_result["found"] is True
48        assert security_result["security"]["asset_class"] == "EQUITY"
49        assert "pricing_rule" in security_result
50    
51    @pytest.mark.asyncio
52    async def test_etf_vs_mutual_fund_characteristics(self, mcp_client):
53        """Test differences between ETF and mutual fund handling"""
54        
55        # Test mutual fund
56        mf_validation = await mcp_client.call_tool(
57            "validate_fund_trade",
58            {
59                "fund_id": "FUND001",  # Mutual Fund
60                "security_id": "SEC001",
61                "quantity": 100,
62                "trade_type": "BUY"
63            }
64        )
65        
66        # Test ETF
67        etf_validation = await mcp_client.call_tool(
68            "validate_fund_trade",
69            {
70                "fund_id": "ETF001",  # ETF
71                "security_id": "SEC003",
72                "quantity": 100,
73                "trade_type": "BUY"
74            }
75        )
76        
77        assert mf_validation["fund"]["fund_type"] == "MUTUAL_FUND"
78        assert etf_validation["fund"]["fund_type"] == "ETF"
79        
80        # ETF should have lower expense ratio
81        assert etf_validation["fund"]["expense_ratio"] < mf_validation["fund"]["expense_ratio"]

Performance Tests

PYTHON
1import asyncio
2import time
3import statistics
4from concurrent.futures import ThreadPoolExecutor
5
6class FundAccountingLoadTester:
7    def __init__(self, mcp_client, num_concurrent_requests=100):
8        self.mcp_client = mcp_client
9        self.num_concurrent_requests = num_concurrent_requests
10        self.results = []
11    
12    async def single_fund_lookup(self):
13        """Simulate a single fund lookup request"""
14        start_time = time.time()
15        
16        try:
17            result = await self.mcp_client.call_tool(
18                "lookup_security_details",
19                {
20                    "identifier": "US0378331005",
21                    "identifier_type": "ISIN"
22                }
23            )
24            duration = time.time() - start_time
25            self.results.append({
26                "success": True,
27                "duration": duration,
28                "response_size": len(str(result))
29            })
30        except Exception as e:
31            duration = time.time() - start_time
32            self.results.append({
33                "success": False,
34                "duration": duration,
35                "error": str(e)
36            })
37    
38    async def single_trade_validation(self):
39        """Simulate a single trade validation request"""
40        start_time = time.time()
41        
42        try:
43            result = await self.mcp_client.call_tool(
44                "validate_fund_trade",
45                {
46                    "fund_id": "FUND001",
47                    "security_id": "SEC001",
48                    "quantity": 100,
49                    "trade_type": "BUY"
50                }
51            )
52            duration = time.time() - start_time
53            self.results.append({
54                "success": True,
55                "duration": duration,
56                "operation": "trade_validation"
57            })
58        except Exception as e:
59            duration = time.time() - start_time
60            self.results.append({
61                "success": False,
62                "duration": duration,
63                "error": str(e),
64                "operation": "trade_validation"
65            })
66    
67    async def run_mixed_load_test(self, duration_seconds=300):
68        """Run mixed load test with various operations"""
69        end_time = time.time() + duration_seconds
70        
71        while time.time() < end_time:
72            # Mix of different operations
73            tasks = []
74            
75            # 50% trade validations
76            for _ in range(self.num_concurrent_requests // 2):
77                tasks.append(self.single_trade_validation())
78            
79            # 30% security lookups
80            for _ in range(int(self.num_concurrent_requests * 0.3)):
81                tasks.append(self.single_fund_lookup())
82            
83            # 20% benchmark lookups
84            for _ in range(int(self.num_concurrent_requests * 0.2)):
85                tasks.append(self.single_benchmark_lookup())
86            
87            await asyncio.gather(*tasks)
88            await asyncio.sleep(0.1)  # Brief pause between batches
89        
90        self.print_detailed_results()
91    
92    def print_detailed_results(self):
93        """Print detailed load test results"""
94        successful_requests = [r for r in self.results if r["success"]]
95        failed_requests = [r for r in self.results if not r["success"]]
96        
97        if successful_requests:
98            durations = [r["duration"] for r in successful_requests]
99            
100            print(f"Fund Accounting MCP Load Test Results:")
101            print(f"  Total Requests: {len(self.results)}")
102            print(f"  Successful: {len(successful_requests)}")
103            print(f"  Failed: {len(failed_requests)}")
104            print(f"  Success Rate: {len(successful_requests)/len(self.results)*100:.2f}%")
105            print(f"  Average Response Time: {statistics.mean(durations):.3f}s")
106            print(f"  Median Response Time: {statistics.median(durations):.3f}s")
107            print(f"  95th Percentile: {statistics.quantiles(durations, n=20)[18]:.3f}s")
108            print(f"  99th Percentile: {statistics.quantiles(durations, n=100)[98]:.3f}s")
109            print(f"  Requests/Second: {len(self.results)/300:.2f}")
110            
111            # Break down by operation type
112            operations = {}
113            for result in successful_requests:
114                op_type = result.get("operation", "unknown")
115                if op_type not in operations:
116                    operations[op_type] = []
117                operations[op_type].append(result["duration"])
118            
119            print(f"\n  Performance by Operation Type:")
120            for op_type, times in operations.items():
121                print(f"    {op_type}: avg {statistics.mean(times):.3f}s, "
122                      f"95th {statistics.quantiles(times, n=20)[18]:.3f}s")

Deployment

Docker Configuration for Fund Accounting

DOCKERFILE
1# Dockerfile
2FROM python:3.11-slim
3
4WORKDIR /app
5
6# Install system dependencies for financial calculations
7RUN apt-get update && apt-get install -y \
8    gcc \
9    g++ \
10    gfortran \
11    libopenblas-dev \
12    liblapack-dev \
13    && rm -rf /var/lib/apt/lists/*
14
15# Copy requirements and install Python dependencies
16COPY requirements.txt .
17RUN pip install --no-cache-dir -r requirements.txt
18
19# Copy application code
20COPY . .
21
22# Create non-root user
23RUN useradd --create-home --shell /bin/bash fundmcp
24RUN chown -R fundmcp:fundmcp /app
25USER fundmcp
26
27# Health check
28HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
29    CMD python -c "import requests; requests.get('http://localhost:8080/health')"
30
31# Expose port
32EXPOSE 8080
33
34# Run the application
35CMD ["python", "-m", "uvicorn", "fund_accounting_mcp_server:app", "--host", "0.0.0.0", "--port", "8080"]

Docker Compose for Investment Management Stack

YAML
1# docker-compose.yml
2version: '3.8'
3
4services:
5  fund-accounting-mcp-server:
6    build: .
7    ports:
8      - "8080:8080"
9    environment:
10      - DATABASE_URL=postgresql://funduser:fundpass@postgres:5432/investment_db
11      - REDIS_URL=redis://redis:6379
12      - PRICING_SERVICE_URL=http://pricing-service:8081
13      - RISK_SERVICE_URL=http://risk-service:8082
14      - LOG_LEVEL=INFO
15      - ENVIRONMENT=production
16    depends_on:
17      - postgres
18      - redis
19      - pricing-service
20      - risk-service
21    volumes:
22      - ./config.yaml:/app/config.yaml:ro
23    restart: unless-stopped
24    networks:
25      - fund-network
26
27  postgres:
28    image: postgres:15
29    environment:
30      - POSTGRES_DB=investment_db
31      - POSTGRES_USER=funduser
32      - POSTGRES_PASSWORD=fundpass
33    volumes:
34      - postgres_data:/var/lib/postgresql/data
35      - ./sql/init_investment_db.sql:/docker-entrypoint-initdb.d/init.sql
36    networks:
37      - fund-network
38
39  redis:
40    image: redis:7-alpine
41    command: redis-server --appendonly yes --maxmemory 512mb --maxmemory-policy allkeys-lru
42    volumes:
43      - redis_data:/data
44    networks:
45      - fund-network
46
47  pricing-service:
48    image: company/pricing-service:latest
49    ports:
50      - "8081:8081"
51    environment:
52      - BLOOMBERG_API_KEY=${BLOOMBERG_API_KEY}
53      - REUTERS_API_KEY=${REUTERS_API_KEY}
54    networks:
55      - fund-network
56
57  risk-service:
58    image: company/risk-analytics:latest
59    ports:
60      - "8082:8082"
61    environment:
62      - RISK_MODEL_PATH=/models
63    volumes:
64      - ./risk_models:/models:ro
65    networks:
66      - fund-network
67
68  prometheus:
69    image: prom/prometheus
70    ports:
71      - "9090:9090"
72    volumes:
73      - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
74    networks:
75      - fund-network
76
77  grafana:
78    image: grafana/grafana
79    ports:
80      - "3000:3000"
81    environment:
82      - GF_SECURITY_ADMIN_PASSWORD=admin
83    volumes:
84      - grafana_data:/var/lib/grafana
85      - ./monitoring/grafana/dashboards:/etc/grafana/provisioning/dashboards
86    networks:
87      - fund-network
88
89volumes:
90  postgres_data:
91  redis_data:
92  grafana_data:
93
94networks:
95  fund-network:
96    driver: bridge

Production Database Schema for Investment Management

SQL
1-- sql/init_investment_db.sql
2-- Fund Master Tables
3CREATE TABLE fund_master (
4    fund_id VARCHAR(20) PRIMARY KEY,
5    fund_name VARCHAR(255) NOT NULL,
6    fund_type VARCHAR(20) NOT NULL,
7    asset_class VARCHAR(30) NOT NULL,
8    inception_date DATE NOT NULL,
9    base_currency CHAR(3) NOT NULL,
10    expense_ratio DECIMAL(8,6) DEFAULT 0,
11    management_fee DECIMAL(8,6) DEFAULT 0,
12    benchmark_id VARCHAR(20),
13    nav_frequency VARCHAR(10) DEFAULT 'DAILY',
14    is_active BOOLEAN DEFAULT true,
15    regulatory_classification VARCHAR(50),
16    investment_objective TEXT,
17    minimum_investment DECIMAL(15,2) DEFAULT 0,
18    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
19    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
20);
21
22CREATE TABLE share_classes (
23    share_class_id VARCHAR(30) PRIMARY KEY,
24    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
25    class_name VARCHAR(50) NOT NULL,
26    ticker_symbol VARCHAR(10),
27    isin VARCHAR(12),
28    cusip VARCHAR(9),
29    expense_ratio DECIMAL(8,6) DEFAULT 0,
30    management_fee DECIMAL(8,6) DEFAULT 0,
31    distribution_fee DECIMAL(8,6) DEFAULT 0,
32    load_front DECIMAL(6,4) DEFAULT 0,
33    load_back DECIMAL(6,4) DEFAULT 0,
34    minimum_investment DECIMAL(15,2) DEFAULT 0,
35    currency CHAR(3) NOT NULL,
36    is_active BOOLEAN DEFAULT true,
37    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
38    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
39);
40
41CREATE TABLE benchmarks (
42    benchmark_id VARCHAR(20) PRIMARY KEY,
43    benchmark_name VARCHAR(255) NOT NULL,
44    provider VARCHAR(100),
45    asset_class VARCHAR(30) NOT NULL,
46    currency CHAR(3) NOT NULL,
47    pricing_source VARCHAR(50),
48    calculation_method VARCHAR(100),
49    is_active BOOLEAN DEFAULT true,
50    constituent_count INTEGER,
51    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
52    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
53);
54
55CREATE TABLE security_master (
56    security_id VARCHAR(20) PRIMARY KEY,
57    security_name VARCHAR(255) NOT NULL,
58    asset_class VARCHAR(30) NOT NULL,
59    security_type VARCHAR(50) NOT NULL,
60    currency CHAR(3) NOT NULL,
61    country_of_risk CHAR(2),
62    sector VARCHAR(100),
63    industry VARCHAR(100),
64    pricing_source VARCHAR(50),
65    exchange VARCHAR(50),
66    is_active BOOLEAN DEFAULT true,
67    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
68    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
69);
70
71CREATE TABLE security_identifiers (
72    security_id VARCHAR(20) NOT NULL REFERENCES security_master(security_id),
73    identifier_type VARCHAR(20) NOT NULL,
74    identifier_value VARCHAR(50) NOT NULL,
75    is_primary BOOLEAN DEFAULT false,
76    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
77    PRIMARY KEY (security_id, identifier_type)
78);
79
80CREATE TABLE pricing_rules (
81    rule_id VARCHAR(20) PRIMARY KEY,
82    security_id VARCHAR(20) NOT NULL REFERENCES security_master(security_id),
83    pricing_source VARCHAR(50) NOT NULL,
84    pricing_method VARCHAR(50) NOT NULL,
85    stale_price_threshold_hours INTEGER DEFAULT 24,
86    is_active BOOLEAN DEFAULT true,
87    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
88    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
89);
90
91CREATE TABLE pricing_validation_rules (
92    rule_id VARCHAR(20) NOT NULL REFERENCES pricing_rules(rule_id),
93    validation_type VARCHAR(50) NOT NULL,
94    validation_parameter JSONB,
95    is_active BOOLEAN DEFAULT true,
96    PRIMARY KEY (rule_id, validation_type)
97);
98
99CREATE TABLE pricing_fallback_sources (
100    rule_id VARCHAR(20) NOT NULL REFERENCES pricing_rules(rule_id),
101    fallback_source VARCHAR(50) NOT NULL,
102    priority_order INTEGER NOT NULL,
103    PRIMARY KEY (rule_id, fallback_source)
104);
105
106-- Portfolio Holdings and NAV Tables
107CREATE TABLE portfolio_positions (
108    position_id SERIAL PRIMARY KEY,
109    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
110    security_id VARCHAR(20) NOT NULL REFERENCES security_master(security_id),
111    position_date DATE NOT NULL,
112    quantity DECIMAL(18,6) NOT NULL,
113    original_cost DECIMAL(18,4),
114    market_value DECIMAL(18,4),
115    weight_percent DECIMAL(8,6),
116    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
117    UNIQUE(fund_id, security_id, position_date)
118);
119
120CREATE TABLE fund_nav (
121    nav_id SERIAL PRIMARY KEY,
122    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
123    share_class_id VARCHAR(30) REFERENCES share_classes(share_class_id),
124    nav_date DATE NOT NULL,
125    total_assets DECIMAL(18,4) NOT NULL,
126    total_liabilities DECIMAL(18,4) DEFAULT 0,
127    net_assets DECIMAL(18,4) NOT NULL,
128    shares_outstanding DECIMAL(18,6) NOT NULL,
129    nav_per_share DECIMAL(12,6) NOT NULL,
130    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
131    UNIQUE(fund_id, share_class_id, nav_date)
132);
133
134CREATE TABLE fund_expenses (
135    expense_id SERIAL PRIMARY KEY,
136    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
137    expense_date DATE NOT NULL,
138    expense_type VARCHAR(50) NOT NULL,
139    expense_amount DECIMAL(12,4) NOT NULL,
140    description TEXT,
141    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
142);
143
144-- Investment Restrictions Tables
145CREATE TABLE fund_restrictions (
146    restriction_id SERIAL PRIMARY KEY,
147    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
148    restriction_type VARCHAR(50) NOT NULL,
149    restriction_value DECIMAL(8,4),
150    restriction_config JSONB,
151    is_active BOOLEAN DEFAULT true,
152    effective_date DATE NOT NULL,
153    expiration_date DATE,
154    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
155);
156
157-- Performance and Attribution Tables
158CREATE TABLE fund_returns (
159    return_id SERIAL PRIMARY KEY,
160    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
161    share_class_id VARCHAR(30) REFERENCES share_classes(share_class_id),
162    return_date DATE NOT NULL,
163    return_1d DECIMAL(10,8),
164    return_mtd DECIMAL(10,8),
165    return_qtd DECIMAL(10,8),
166    return_ytd DECIMAL(10,8),
167    return_1y DECIMAL(10,8),
168    return_3y DECIMAL(10,8),
169    return_5y DECIMAL(10,8),
170    return_inception DECIMAL(10,8),
171    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
172    UNIQUE(fund_id, share_class_id, return_date)
173);
174
175CREATE TABLE benchmark_returns (
176    return_id SERIAL PRIMARY KEY,
177    benchmark_id VARCHAR(20) NOT NULL REFERENCES benchmarks(benchmark_id),
178    return_date DATE NOT NULL,
179    return_1d DECIMAL(10,8),
180    return_mtd DECIMAL(10,8),
181    return_qtd DECIMAL(10,8),
182    return_ytd DECIMAL(10,8),
183    return_1y DECIMAL(10,8),
184    return_3y DECIMAL(10,8),
185    return_5y DECIMAL(10,8),
186    return_inception DECIMAL(10,8),
187    index_level DECIMAL(18,6),
188    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
189    UNIQUE(benchmark_id, return_date)
190);
191
192-- Risk Analytics Tables
193CREATE TABLE fund_risk_metrics (
194    metric_id SERIAL PRIMARY KEY,
195    fund_id VARCHAR(20) NOT NULL REFERENCES fund_master(fund_id),
196    calculation_date DATE NOT NULL,
197    var_1d DECIMAL(12,8),
198    var_10d DECIMAL(12,8),
199    tracking_error DECIMAL(10,8),
200    beta DECIMAL(8,6),
201    alpha DECIMAL(10,8),
202    sharpe_ratio DECIMAL(8,6),
203    information_ratio DECIMAL(8,6),
204    max_drawdown DECIMAL(8,6),
205    volatility DECIMAL(10,8),
206    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
207    UNIQUE(fund_id, calculation_date)
208);
209
210-- Security Prices Table
211CREATE TABLE security_prices (
212    price_id SERIAL PRIMARY KEY,
213    security_id VARCHAR(20) NOT NULL REFERENCES security_master(security_id),
214    price_date DATE NOT NULL,
215    price DECIMAL(18,8) NOT NULL,
216    currency CHAR(3) NOT NULL,
217    pricing_source VARCHAR(50) NOT NULL,
218    price_type VARCHAR(20) DEFAULT 'CLOSE',
219    volume BIGINT,
220    is_validated BOOLEAN DEFAULT false,
221    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
222    UNIQUE(security_id, price_date, pricing_source, price_type)
223);
224
225-- Indexes for Performance
226CREATE INDEX idx_portfolio_positions_fund_date ON portfolio_positions(fund_id, position_date);
227CREATE INDEX idx_portfolio_positions_security_date ON portfolio_positions(security_id, position_date);
228CREATE INDEX idx_fund_nav_fund_date ON fund_nav(fund_id, nav_date);
229CREATE INDEX idx_security_prices_security_date ON security_prices(security_id, price_date);
230CREATE INDEX idx_fund_returns_fund_date ON fund_returns(fund_id, return_date);
231CREATE INDEX idx_benchmark_returns_bench_date ON benchmark_returns(benchmark_id, return_date);
232
233-- Sample Data
234INSERT INTO fund_master VALUES 
235('FUND001', 'Global Equity Growth Fund', 'MUTUAL_FUND', 'EQUITY', '2010-01-15', 'USD', 
236 0.007500, 0.005000, 'BENCH001', 'DAILY', true, '40_ACT', 
237 'Long-term capital growth through global equity investments', 10000.00),
238('ETF001', 'Technology Sector ETF', 'ETF', 'EQUITY', '2015-06-01', 'USD',
239 0.002500, 0.002000, 'BENCH002', 'DAILY', true, '40_ACT',
240 'Track the performance of technology sector stocks', 1.00),
241('FUND002', 'International Bond Fund', 'MUTUAL_FUND', 'FIXED_INCOME', '2012-03-20', 'USD',
242 0.006000, 0.004000, 'BENCH003', 'DAILY', true, '40_ACT',
243 'Income generation through international fixed income securities', 5000.00);
244
245INSERT INTO share_classes VALUES
246('FUND001_A', 'FUND001', 'Class A', 'GEGRX', 'US12345678901', '123456789',
247 0.010000, 0.005000, 0.002500, 0.0575, 0.0000, 10000.00, 'USD', true),
248('FUND001_I', 'FUND001', 'Institutional', 'GEGIX', 'US12345678902', '123456790',
249 0.007500, 0.005000, 0.000000, 0.0000, 0.0000, 1000000.00, 'USD', true),
250('ETF001_ETF', 'ETF001', 'ETF Shares', 'TECH', 'US12345678903', '123456791',
251 0.002500, 0.002000, 0.000000, 0.0000, 0.0000, 1.00, 'USD', true);
252
253INSERT INTO benchmarks VALUES
254('BENCH001', 'MSCI World Index', 'MSCI', 'EQUITY', 'USD', 'MSCI', 'MARKET_CAP_WEIGHTED', true, 1500),
255('BENCH002', 'NASDAQ Technology Index', 'NASDAQ', 'EQUITY', 'USD', 'BLOOMBERG', 'MARKET_CAP_WEIGHTED', true, 100),
256('BENCH003', 'Bloomberg Global Aggregate Bond Index', 'Bloomberg', 'FIXED_INCOME', 'USD', 'BLOOMBERG', 'MARKET_VALUE_WEIGHTED', true, 25000);
257
258INSERT INTO security_master VALUES
259('SEC001', 'Apple Inc.', 'EQUITY', 'COMMON_STOCK', 'USD', 'US', 'Technology', 'Technology Hardware', 'BLOOMBERG', 'NASDAQ', true),
260('SEC002', 'US Treasury 2.5% 2030', 'FIXED_INCOME', 'GOVERNMENT_BOND', 'USD', 'US', 'Government', 'Treasury', 'BLOOMBERG', null, true),
261('SEC003', 'Microsoft Corporation', 'EQUITY', 'COMMON_STOCK', 'USD', 'US', 'Technology', 'Software', 'BLOOMBERG', 'NASDAQ', true);
262
263INSERT INTO security_identifiers VALUES
264('SEC001', 'ISIN', 'US0378331005', true),
265('SEC001', 'CUSIP', '037833100', false),
266('SEC001', 'TICKER', 'AAPL', false),
267('SEC001', 'SEDOL', '2046251', false),
268('SEC002', 'ISIN', 'US912828XG55', true),
269('SEC002', 'CUSIP', '912828XG5', false),
270('SEC002', 'TICKER', 'T 2.5 08/15/30', false),
271('SEC003', 'ISIN', 'US5949181045', true),
272('SEC003', 'CUSIP', '594918104', false),
273('SEC003', 'TICKER', 'MSFT', false),
274('SEC003', 'SEDOL', '2588173', false);
275
276INSERT INTO pricing_rules VALUES
277('RULE001', 'SEC001', 'BLOOMBERG', 'MARKET', 24, true),
278('RULE002', 'SEC002', 'BLOOMBERG', 'MATRIX', 24, true),
279('RULE003', 'SEC003', 'BLOOMBERG', 'MARKET', 24, true);
280
281INSERT INTO pricing_validation_rules VALUES
282('RULE001', 'STALE_PRICE_CHECK', '{"max_hours": 24}', true),
283('RULE001', 'PRICE_VARIANCE_CHECK', '{"max_variance_pct": 10.0}', true),
284('RULE002', 'YIELD_CURVE_CHECK', '{"tolerance_bps": 5}', true),
285('RULE002', 'CREDIT_SPREAD_CHECK', '{"tolerance_bps": 10}', true),
286('RULE003', 'STALE_PRICE_CHECK', '{"max_hours": 24}', true),
287('RULE003', 'VOLUME_CHECK', '{"min_volume": 10000}', true);
288
289INSERT INTO pricing_fallback_sources VALUES
290('RULE001', 'REUTERS', 1),
291('RULE001', 'FACTSET', 2),
292('RULE002', 'REUTERS', 1),
293('RULE003', 'REUTERS', 1),
294('RULE003', 'FACTSET', 2);
295
296-- Sample fund restrictions
297INSERT INTO fund_restrictions VALUES
298(1, 'FUND001', 'MAX_SINGLE_SECURITY_WEIGHT', 5.0, null, true, '2010-01-15', null),
299(2, 'FUND001', 'MAX_SECTOR_WEIGHT', 25.0, null, true, '2010-01-15', null),
300(3, 'FUND001', 'MAX_COUNTRY_WEIGHT', 30.0, null, true, '2010-01-15', null),
301(4, 'FUND001', 'MIN_HOLDINGS', 50, null, true, '2010-01-15', null),
302(5, 'ETF001', 'MAX_SINGLE_SECURITY_WEIGHT', 25.0, null, true, '2015-06-01', null),
303(6, 'ETF001', 'TRACKING_ERROR_LIMIT', 0.5, null, true, '2015-06-01', null),
304(7, 'FUND002', 'MIN_CREDIT_QUALITY', null, '{"min_rating": "BBB"}', true, '2012-03-20', null),
305(8, 'FUND002', 'MAX_DURATION', 10.0, null, true, '2012-03-20', null);

Kubernetes Deployment for Fund Accounting

YAML
1# k8s-fund-accounting.yaml
2apiVersion: apps/v1
3kind: Deployment
4metadata:
5  name: fund-accounting-mcp-server
6  labels:
7    app: fund-accounting-mcp-server
8    tier: api
9spec:
10  replicas: 3
11  selector:
12    matchLabels:
13      app: fund-accounting-mcp-server
14  template:
15    metadata:
16      labels:
17        app: fund-accounting-mcp-server
18    spec:
19      containers:
20      - name: fund-accounting-mcp-server
21        image: company/fund-accounting-mcp:latest
22        ports:
23        - containerPort: 8080
24        env:
25        - name: DATABASE_URL
26          valueFrom:
27            secretKeyRef:
28              name: fund-mcp-secrets
29              key: database-url
30        - name: REDIS_URL
31          valueFrom:
32            secretKeyRef:
33              name: fund-mcp-secrets
34              key: redis-url
35        - name: PRICING_SERVICE_URL
36          value: "http://pricing-service:8081"
37        - name: RISK_SERVICE_URL
38          value: "http://risk-service:8082"
39        resources:
40          requests:
41            memory: "512Mi"
42            cpu: "500m"
43          limits:
44            memory: "1Gi"
45            cpu: "1000m"
46        livenessProbe:
47          httpGet:
48            path: /health
49            port: 8080
50          initialDelaySeconds: 60
51          periodSeconds: 30
52        readinessProbe:
53          httpGet:
54            path: /ready
55            port: 8080
56          initialDelaySeconds: 10
57          periodSeconds: 5
58        volumeMounts:
59        - name: config-volume
60          mountPath: /app/config.yaml
61          subPath: config.yaml
62      volumes:
63      - name: config-volume
64        configMap:
65          name: fund-mcp-config
66---
67apiVersion: v1
68kind: Service
69metadata:
70  name: fund-accounting-mcp-service
71spec:
72  selector:
73    app: fund-accounting-mcp-server
74  ports:
75  - protocol: TCP
76    port: 80
77    targetPort: 8080
78  type: ClusterIP
79---
80apiVersion: v1
81kind: ConfigMap
82metadata:
83  name: fund-mcp-config
84data:
85  config.yaml: |
86    server:
87      name: "fund-accounting-static-data"
88      version: "1.0.0"
89      environment: "production"
90      port: 8080
91
92    database:
93      pool_size: 20
94      timeout: 30
95      retry_attempts: 3
96
97    cache:
98      ttl_minutes: 15
99      max_connections: 20
100
101    security:
102      require_api_key: true
103      rate_limit_per_minute: 2000
104      allowed_origins:
105        - "https://portfolio-management.company.com"
106        - "https://fund-accounting.company.com"
107        - "https://risk-analytics.company.com"
108
109    features:
110      enable_real_time_pricing: true
111      enable_risk_analytics: true
112      enable_compliance_checking: true
113      enable_performance_attribution: true
114
115    monitoring:
116      metrics_enabled: true
117      log_level: "INFO"
118      health_check_interval: 30
119---
120apiVersion: v1
121kind: Secret
122metadata:
123  name: fund-mcp-secrets
124type: Opaque
125stringData:
126  database-url: "postgresql://funduser:fundpass@postgres-service:5432/investment_db"
127  redis-url: "redis://redis-service:6379"

Requirements File for Investment Management

TXT
1# requirements.txt
2# MCP and Core Framework
3mcp>=1.0.0
4asyncio-mqtt>=0.16.0
5fastapi>=0.104.0
6uvicorn>=0.24.0
7pydantic>=2.4.0
8
9# Database and Caching
10asyncpg>=0.29.0
11SQLAlchemy>=2.0.0
12alembic>=1.12.0
13aioredis>=2.0.0
14
15# Financial and Mathematical Libraries
16numpy>=1.24.0
17pandas>=2.1.0
18scipy>=1.11.0
19pyquantlib>=0.2.0
20
21# Data Validation and Serialization
22pydantic>=2.4.0
23marshmallow>=3.20.0
24
25# API and HTTP
26aiohttp>=3.8.0
27httpx>=0.24.0
28requests>=2.31.0
29
30# Configuration and Environment
31pyyaml>=6.0
32python-dotenv>=1.0.0
33
34# Monitoring and Logging
35prometheus-client>=0.17.0
36structlog>=23.1.0
37
38# Testing
39pytest>=7.4.0
40pytest-asyncio>=0.21.0
41pytest-mock>=3.11.0
42factory-boy>=3.3.0
43
44# Financial Data Sources (Optional - based on vendors used)
45# bloomberg-api>=1.0.0
46# refinitiv-dataplatform>=1.0.0
47# alpha-vantage>=2.3.0
48
49# Development Tools
50black>=23.7.0
51flake8>=6.0.0
52mypy>=1.5.0

Monitoring and Alerting

Grafana Dashboard Configuration

JSON
1{
2  "dashboard": {
3    "title": "Fund Accounting MCP Server",
4    "panels": [
5      {
6        "title": "Fund Trade Validations",
7        "type": "graph",
8        "targets": [
9          {
10            "expr": "rate(mcp_fund_trade_validations_total[5m])",
11            "legendFormat": "{{status}}"
12          }
13        ]
14      },
15      {
16        "title": "NAV Calculations",
17        "type": "graph",
18        "targets": [
19          {
20            "expr": "rate(mcp_nav_calculations_total[5m])",
21            "legendFormat": "{{fund_type}}"
22          }
23        ]
24      },
25      {
26        "title": "Security Lookups",
27        "type": "graph",
28        "targets": [
29          {
30            "expr": "histogram_quantile(0.95, rate(mcp_security_lookup_duration_seconds_bucket[5m]))",
31            "legendFormat": "95th Percentile"
32          }
33        ]
34      },
35      {
36        "title": "Fund Performance Attribution",
37        "type": "graph",
38        "targets": [
39          {
40            "expr": "rate(mcp_performance_attribution_requests_total[5m])",
41            "legendFormat": "{{attribution_method}}"
42          }
43        ]
44      },
45      {
46        "title": "Database Connection Pool",
47        "type": "graph",
48        "targets": [
49          {
50            "expr": "mcp_db_connections_active",
51            "legendFormat": "Active Connections"
52          }
53        ]
54      }
55    ]
56  }
57}

Conclusion

This comprehensive guide demonstrates how to build a production-ready MCP server specifically designed for mutual fund and ETF accounting static data. The implementation provides:

Key Benefits for Investment Management

  • Comprehensive Fund Data: Complete fund specifications, share classes, benchmarks, and security master data
  • Real-time Validation: Trade validation against fund restrictions, asset allocation limits, and regulatory requirements
  • Performance Analytics: NAV calculation, performance attribution, and risk analytics integration
  • Regulatory Compliance: Built-in compliance checking for investment restrictions and regulatory requirements
  • Scalable Architecture: Designed to handle high-frequency trading systems and large fund complexes

Production Features for Investment Firms

  • Multi-vendor Pricing: Support for Bloomberg, Reuters, FactSet, and custom pricing sources
  • Risk Integration: Real-time risk analytics including VaR, tracking error, and attribution analysis
  • Fund Accounting Workflows: Complete NAV calculation, expense allocation, and performance measurement
  • Security Master Management: Comprehensive security identifiers, classifications, and pricing rules
  • Investment Restrictions: Flexible rule engine for fund-specific investment guidelines and limits

Advanced Investment Management Capabilities

  • Real-time Portfolio Monitoring: Live position tracking and compliance monitoring
  • Performance Attribution: Multi-factor performance analysis and benchmark comparison
  • Risk Analytics: Integration with risk management systems for VaR and stress testing
  • Regulatory Reporting: Support for various regulatory frameworks (40 Act, UCITS, etc.)
  • Multi-currency Support: Global fund management with currency hedging capabilities

For Investment Management AI Agents

The MCP server provides a robust foundation for building sophisticated investment management agents that can:

  • Validate trades against complex fund restrictions and regulatory requirements
  • Calculate NAV and performance metrics in real-time
  • Perform risk analysis and attribution analysis
  • Monitor compliance with investment guidelines
  • Generate regulatory reports and client communications

This architecture enables investment management firms to build an ecosystem of AI agents that work together seamlessly, all backed by consistent, reliable fund accounting and investment data services. The system is designed to scale from small asset managers to large global investment firms with complex multi-fund, multi-currency operations.

References

Technical Standards and Protocols

1. Model Context Protocol (MCP) Specification

  • Anthropic. (2024). Model Context Protocol Documentation. https://docs.anthropic.com/en/api/mcp
  • GitHub Repository: https://github.com/modelcontextprotocol/specification

2. Financial Industry Standards

  • ISO 20022: Universal Financial Industry Message Scheme. International Organization for Standardization. https://www.iso20022.org/
  • FIX Protocol: Financial Information eXchange Protocol for Electronic Trading. FIX Trading Community. https://www.fixtrading.org/
  • SWIFT Standards: Society for Worldwide Interbank Financial Telecommunication. https://www.swift.com/standards

Investment Management Frameworks

3. Fund Accounting Standards

  • Investment Company Institute. (2023). Mutual Fund Fact Book. https://www.ici.org/system/files/2023-05/2023_factbook.pdf
  • CFA Institute. (2020). Global Investment Performance Standards (GIPS®). https://www.cfainstitute.org/en/ethics-standards/codes/gips-standards

4. Regulatory Guidelines

  • U.S. Securities and Exchange Commission. Investment Company Act of 1940. https://www.sec.gov/investment/laws-regulations
  • European Securities and Markets Authority. UCITS Directive. https://www.esma.europa.eu/regulation/fund-management/ucits

Data Standards and Identifiers

5. Security Identification Standards

  • ISIN: International Securities Identification Number. ISO 6166:2021. https://www.isin.org/
  • CUSIP: Committee on Uniform Securities Identification Procedures. https://www.cusip.com/
  • SEDOL: Stock Exchange Daily Official List. London Stock Exchange Group. https://www.londonstockexchange.com/

6. Classification Systems

  • GICS: Global Industry Classification Standard. MSCI and S&P Dow Jones Indices. https://www.msci.com/gics
  • ICB: Industry Classification Benchmark. FTSE Russell. https://www.ftserussell.com/data/industry-classification-benchmark-icb

Technology and Architecture References

7. Database and Performance

  • PostgreSQL Global Development Group. (2023). PostgreSQL Documentation. https://www.postgresql.org/docs/
  • Redis Labs. (2023). Redis Documentation. https://redis.io/documentation

8. Python Financial Libraries

  • McKinney, W. (2022). Python for Data Analysis, 3rd Edition. O'Reilly Media.
  • Hilpisch, Y. (2020). Python for Finance: Mastering Data-Driven Finance, 2nd Edition. O'Reilly Media.

Risk Management and Performance Attribution

9. Risk Analytics

  • Jorion, P. (2020). Value at Risk: The New Benchmark for Managing Financial Risk, 4th Edition. McGraw-Hill Education.
  • Litterman, R. (1996). "Hot Spots and Hedges." Journal of Portfolio Management, 23(2), 52-75.

10. Performance Attribution

  • Brinson, G. P., Hood, L. R., & Beebower, G. L. (1986). "Determinants of Portfolio Performance." Financial Analysts Journal, 42(4), 39-44.
  • Fama, E. F., & French, K. R. (1993). "Common Risk Factors in the Returns on Stocks and Bonds." Journal of Financial Economics, 33(1), 3-56.

API Design and Microservices

11. REST API Design

  • Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University of California, Irvine.
  • Richardson, L., & Ruby, S. (2007). RESTful Web Services. O'Reilly Media.

12. Microservices Architecture

  • Newman, S. (2021). Building Microservices: Designing Fine-Grained Systems, 2nd Edition. O'Reilly Media.
  • Fowler, M. (2014). "Microservices." https://martinfowler.com/articles/microservices.html

Containerization and Deployment

13. Docker and Kubernetes

  • Burns, B., & Beda, J. (2019). Kubernetes: Up and Running, 2nd Edition. O'Reilly Media.
  • Docker Inc. (2023). Docker Documentation. https://docs.docker.com/

Monitoring and Observability

14. Prometheus and Grafana

  • Prometheus Authors. (2023). Prometheus Documentation. https://prometheus.io/docs/
  • Grafana Labs. (2023). Grafana Documentation. https://grafana.com/docs/

Testing and Quality Assurance

15. Testing Frameworks

  • Percival, H., & Gregory, B. (2020). Architecture Patterns with Python. O'Reilly Media.
  • pytest Development Team. (2023). pytest Documentation. https://docs.pytest.org/

Financial Data Vendors

16. Market Data Providers

  • Bloomberg Terminal: Bloomberg L.P. https://www.bloomberg.com/professional/
  • Refinitiv (formerly Thomson Reuters): https://www.refinitiv.com/
  • FactSet: https://www.factset.com/
  • MSCI: https://www.msci.com/

Compliance and Regulatory Technology

17. RegTech and Compliance

  • Arner, D. W., Barberis, J., & Buckey, R. P. (2017). "FinTech, RegTech, and the Reconceptualization of Financial Regulation." Northwestern Journal of International Law & Business, 37(3), 371-413.
  • Financial Conduct Authority. (2023). RegTech. https://www.fca.org.uk/firms/innovation/regtech

Academic and Research Papers

18. Fund Performance and Efficiency

  • Sharpe, W. F. (1966). "Mutual Fund Performance." Journal of Business, 39(1), 119-138.
  • Jensen, M. C. (1968). "The Performance of Mutual Funds in the Period 1945-1964." Journal of Finance, 23(2), 389-416.

19. Modern Portfolio Theory

  • Markowitz, H. (1952). "Portfolio Selection." Journal of Finance, 7(1), 77-91.
  • Sharpe, W. F. (1964). "Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk." Journal of Finance, 19(3), 425-442.

Industry Reports and Whitepapers

20. Investment Management Technology

  • PwC. (2023). Asset & Wealth Management Revolution: Embracing Exponential Change. https://www.pwc.com/gx/en/industries/financial-services/publications/asset-wealth-management-revolution.html
  • Deloitte. (2023). Investment Management Outlook 2023. https://www2.deloitte.com/content/dam/Deloitte/us/Documents/financial-services/us-fsi-dcfs-investment-management-outlook-2023.pdf

21. FinTech and AI in Investment Management

  • McKinsey & Company. (2023). The Future of AI in Financial Services. https://www.mckinsey.com/industries/financial-services/our-insights/the-future-of-ai-in-financial-services
  • EY. (2023). Global FinTech Adoption Index 2023. https://www.ey.com/en_gl/financial-services-emeia/how-fintech-is-evolving-to-meet-changing-demands

Open Source Projects and Libraries

22. Python Financial Ecosystem

  • QuantLib: https://www.quantlib.org/
  • PyPortfolioOpt: https://github.com/robertmartin8/PyPortfolioOpt
  • zipline: https://github.com/quantopian/zipline
  • pandas: https://pandas.pydata.org/

23. Java Financial Libraries

  • Strata: OpenGamma's market risk and pricing library. https://github.com/OpenGamma/Strata
  • JQuantLib: Java port of QuantLib. http://www.jquantlib.org/

Security and Best Practices

24. API Security

  • OWASP. (2023). API Security Top 10 2023. https://owasp.org/API-Security/editions/2023/en/0x00-toc/
  • National Institute of Standards and Technology. (2020). NIST Cybersecurity Framework. https://www.nist.gov/cyberframework

Data Privacy and Governance

25. Data Protection

  • European Union. (2018). General Data Protection Regulation (GDPR). https://eur-lex.europa.eu/eli/reg/2016/679/oj
  • California Consumer Privacy Act. (2020). https://oag.ca.gov/privacy/ccpa

---

Note: URLs and publication dates are current as of the time of writing (2024). Some links may require institutional access or subscriptions. For academic papers, consider accessing through institutional libraries or academic databases such as JSTOR, SSRN, or Google Scholar.

Disclaimer: This article is for educational and informational purposes only and does not constitute financial, investment, or professional advice. Implementation of any system described should be done in consultation with qualified professionals and in compliance with applicable regulations and standards.

Share this article

Article: MCP Server - Reference Implementation in Fund Accounting

URL: /blog/mcp-server-reference-implementation-in-fund-accounting