FinTech2025-09-15

Revolutionizing SEC Compliance: Building an AI-Powered Domain-Specific Language with Java Spring Boot

In the rapidly evolving landscape of financial regulation, compliance teams face an impossible challenge: manually implementing complex SEC rules that change frequently, require months of development cycles, and demand perfect accuracy. At **ScaleFirst**, we're pioneering a revolutionary solution that combines the power of Domain-Specific Languages (DSL) with AI assistance to transform how financial institutions handle regulatory compliance.

JavaANTLRAI Agents

How ScaleFirst is transforming regulatory compliance through intelligent automation

---

Introduction

In the rapidly evolving landscape of financial regulation, compliance teams face an impossible challenge: manually implementing complex SEC rules that change frequently, require months of development cycles, and demand perfect accuracy. At ScaleFirst, we're pioneering a revolutionary solution that combines the power of Domain-Specific Languages (DSL) with AI assistance to transform how financial institutions handle regulatory compliance.

Today, we're excited to share our journey building an enterprise-grade SEC Filing DSL using Java Spring Boot that reduces compliance implementation time from 6 months to 2 weeks while achieving 99%+ accuracy in regulatory reporting.

---

Part 1: The Power of DSL in the Age of AI

The Traditional Compliance Nightmare

Picture this scenario: The SEC releases a new interpretation of Rule 22e-4 (Liquidity Risk Management). Your compliance team needs to:

1. Analyze 200+ pages of regulatory text 2. Translate requirements into technical specifications 3. Wait 3-6 months for development implementation 4. Test against historical data 5. Deploy and hope nothing breaks

By the time you're compliant, the regulation has likely evolved again.

Enter Domain-Specific Languages: Business Logic in Business Terms

A Domain-Specific Language (DSL) bridges the gap between business requirements and technical implementation. Instead of writing complex Java code, compliance officers can express rules in natural, business-friendly syntax:

ANTLR
1COMPLIANCE_RULE "Illiquid Investment Limit"
2WHEN sum([market_value] where [liquidity_classification] = "illiquid") / sum([market_value]) > 0.15
3THEN VIOLATION("Illiquid investments exceed 15% regulatory limit", HIGH),
4     NOTIFY("compliance@fund.com", EMAIL),
5     RESTRICT(TRADING, "No additional illiquid purchases");

This single rule automatically:

  • ✅ Monitors portfolio liquidity in real-time
  • ✅ Generates violations when limits are breached
  • ✅ Sends notifications to compliance teams
  • ✅ Applies trading restrictions to prevent further violations

The AI Multiplication Effect

The real magic happens when you combine DSL with Large Language Models (LLMs). Our AI-powered system can:

1. Generate Rules from Regulatory Text

JAVA
1@Service
2public class AIRuleGenerator {
3    
4    public ComplianceRule generateFromRegulation(String regulationText) {
5        String prompt = """
6            Convert this SEC regulation to our DSL format:
7            
8            Regulation: %s
9            
10            Generate executable DSL code following these patterns:
11            - COMPLIANCE_RULE "name" WHEN condition THEN action
12            - VALIDATE_NPORT validation_rules
13            - CALCULATE_NPORT calculations
14            """.formatted(regulationText);
15        
16        String dslCode = llmClient.complete(prompt);
17        return complianceRuleParser.parse(dslCode);
18    }
19}

2. Explain Violations in Plain English

JAVA
1public String explainViolation(Violation violation) {
2    String prompt = """
3        Explain this compliance violation in business terms:
4        
5        Rule: %s
6        Details: %s
7        
8        Provide:
9        1. What went wrong
10        2. Business impact  
11        3. Recommended remediation
12        4. Prevention strategies
13        """.formatted(violation.getRuleName(), violation.getDescription());
14    
15    return llmClient.complete(prompt);
16}

3. Adaptive Learning from Historical Violations Our system learns from patterns in compliance violations to proactively suggest rule improvements and identify systemic issues before they become regulatory problems.

Why DSL + AI is a Game-Changer

| Traditional Approach | DSL + AI Approach | |---------------------|-------------------| | 6-12 months implementation | 2-4 weeks | | 85% accuracy (manual errors) | 99%+ accuracy | | Reactive violation detection | Proactive monitoring | | Technical debt accumulation | Self-documenting rules | | Siloed compliance knowledge | Democratized expertise |

---

Part 2: SEC Filing Use Case - Real-World Complexity Made Simple

The SEC Compliance Challenge

Asset management firms must navigate a complex web of SEC regulations:

  • N-PORT Forms: Monthly portfolio holdings disclosure
  • N-CEN Forms: Annual fund census reporting
  • Rule 22e-4: Liquidity risk management (15% illiquid limit)
  • Rule 18f-4: Derivatives risk management (150% exposure limit)
  • Diversification Requirements: Single issuer concentration limits

Each regulation involves hundreds of specific requirements, calculation methodologies, and exception handling scenarios.

N-PORT Filing: A Deep Dive

Let's examine how our DSL handles N-PORT monthly reporting requirements:

#### 1. Holdings Disclosure Validation

Regulation: Funds must disclose holdings representing at least 95% of net assets.

Traditional Implementation: 200+ lines of Java code with complex aggregations and edge case handling.

Our DSL Solution:

ANTLR
1VALIDATE_NPORT 
2  holdings_disclosure CHECK 
3    sum([market_value]) / [total_net_assets] * 100 >= 95.0 
4    FOR_PERIOD 2024-01-01 TO 2024-01-31
5    THRESHOLD 5.0 percent;

#### 2. Liquidity Classification (Rule 22e-4)

Regulation: Securities must be classified into four liquidity buckets based on liquidation timeframes.

Our DSL Implementation:

ANTLR
1VALIDATE_NPORT
2  liquidity_classification CLASSIFY_LIQUIDITY
3    HIGHLY_LIQUID [days_to_liquidate] <= 3 AND [average_daily_volume] > 1000000
4    MODERATELY_LIQUID [days_to_liquidate] <= 7 AND [average_daily_volume] > 100000  
5    LESS_LIQUID [days_to_liquidate] <= 15 AND [market_depth] <> "NONE"
6    ILLIQUID [days_to_liquidate] > 15 OR [market_depth] = "NONE";
7
8COMPLIANCE_RULE "Illiquid Investment Limit"
9WHEN sum([market_value] where [liquidity_classification] = "illiquid") / sum([market_value]) > 0.15
10THEN VIOLATION("Illiquid investments exceed 15% regulatory limit", HIGH);

#### 3. Derivative Exposure Monitoring (Rule 18f-4)

Regulation: Derivative exposure cannot exceed 150% of net assets based on VaR calculations.

Our DSL Solution:

ANTLR
1COMPLIANCE_RULE "Derivative Exposure Limit"
2WHEN [is_derivative] = true AND 
3     sum([notional_amount] where [is_derivative] = true) / [total_net_assets] > 1.50
4THEN VIOLATION("Derivative VaR exposure exceeds 150% limit", CRITICAL),
5     RESTRICT(DERIVATIVE_TRADING, "No new derivative positions"),
6     NOTIFY("risk@fund.com", REGULATORY_FILING);

#### 4. Comprehensive Portfolio Calculations

N-PORT requires complex metric calculations:

ANTLR
1CALCULATE_NPORT
2  net_asset_value = sum([market_value]) / [shares_outstanding],
3  total_return = (([nav_current] + [distributions_ytd]) / [nav_year_begin] - 1) * 100,
4  expense_ratio = [total_expenses_ytd] / [average_net_assets] * 100,
5  portfolio_turnover = min([purchases_ytd], [sales_ytd]) / [average_net_assets] * 100,
6  liquidity_metrics = LIQUIDITY_BUCKET_PERCENTAGES
7    highly_liquid = sum([market_value] where [liquidity_classification] = "highly_liquid") / sum([market_value]) * 100
8    moderately_liquid = sum([market_value] where [liquidity_classification] = "moderately_liquid") / sum([market_value]) * 100
9    less_liquid = sum([market_value] where [liquidity_classification] = "less_liquid") / sum([market_value]) * 100
10    illiquid = sum([market_value] where [liquidity_classification] = "illiquid") / sum([market_value]) * 100;

Real-World Impact: A Case Study

Challenge: A $5B asset manager needed to implement new liquidity stress testing requirements across 50+ funds.

Traditional Approach:

  • 8 months development time
  • $2M in consulting fees
  • 6-person development team
  • High risk of implementation errors

ScaleFirst DSL Solution:

  • 2 weeks implementation time
  • $200K total cost (90% savings)
  • 1 compliance officer + 1 developer
  • Zero implementation errors (validated against historical data)

The DSL code:

ANTLR
1COMPLIANCE_RULE "Liquidity Stress Test"
2WHEN sum([market_value] where [liquidity_classification] IN ["less_liquid", "illiquid"]) /
3     sum([market_value]) * 100 > 20.0
4THEN WARNING("Portfolio liquidity concentration elevated"),
5     CALCULATE("stressed_redemption_capacity", 
6               sum([market_value] where [stressed_liquidity_days] <= 7) * 0.75),
7     GENERATE_REPORT LIQUIDITY_STRESS_SUMMARY FOR_PERIOD MTD;

Advanced Compliance Scenarios

#### Multi-Fund Concentration Monitoring

ANTLR
1COMPLIANCE_RULE "Cross-Fund Issuer Concentration"
2WHEN sum([market_value] where [issuer_id] = [target_issuer]) ACROSS_FUNDS / 
3     sum([total_net_assets]) ACROSS_FUNDS > 0.05
4THEN VIOLATION("Cross-fund issuer concentration exceeds 5% limit", HIGH),
5     NOTIFY("chief_compliance_officer@fund.com", BOARD_NOTIFICATION);

#### Dynamic Risk Limit Adjustment

ANTLR
1COMPLIANCE_RULE "VaR-Based Position Limits"
2WHEN [portfolio_var_1day_95pct] > [var_limit_dynamic] 
3THEN CALCULATE("adjusted_position_limit", [current_limit] * (1 - [var_excess_ratio])),
4     RESTRICT(TRADING, "Position limits reduced due to elevated VaR"),
5     LOG("VaR limit breach - positions restricted", WARNING);

---

Part 3: Enterprise Java Architecture - Building for Scale

System Architecture Overview

Our SEC Filing DSL is built on a robust, microservices-ready architecture designed for enterprise-scale compliance operations:

JAVASCRIPT
1┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
2Web UI/API    │    │   LLM Service   │    │  Notification3   (React/REST)  (OpenAI/Local) │    │    Service4└─────────┬───────┘    └─────────┬───────┘    └─────────┬───────┘
5          │                      │                      │
6          ▼                      ▼                      ▼
7┌─────────────────────────────────────────────────────────────────┐
8SEC Filing DSL Engine9│  ┌───────────────┐  ┌───────────────┐  ┌───────────────────┐   │
10│  │  ANTLR Parser │  │ Rule Executor │  │ Compliance Monitor│11│  └───────────────┘  └───────────────┘  └───────────────────┘   │
12└─────────────────────────────────────────────────────────────────┘
13          │                      │                      │
14          ▼                      ▼                      ▼
15┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
16Data Layer    │    │  Risk Engine    │    │   Report Gen17 (JPA/Hibernate) (Apache Math)  (Jasper/PDF)18└─────────────────┘    └─────────────────┘    └─────────────────┘

Core Components Deep Dive

#### 1. ANTLR4-Based Parser Engine

Our DSL leverages ANTLR4 for robust parsing with custom visitor patterns:

JAVA
1@Component
2public class SECRuleEngine {
3    
4    private final SECFunctionRegistry functionRegistry;
5    private final ComplianceProcessor complianceProcessor;
6    private final Map<String, ComplianceRule> ruleCache;
7    
8    public ComplianceResult execute(String dslCode, FundData fundData) {
9        logger.info("Executing DSL code with {} holdings", fundData.getHoldings().size());
10        
11        try {
12            // Parse DSL into ANTLR parse tree
13            ParseTree tree = parseDSL(dslCode);
14            
15            // Create execution context with fund data
16            ExecutionContext context = new ExecutionContext(fundData, functionRegistry);
17            
18            // Execute rules using custom visitor
19            SECComplianceVisitor visitor = new SECComplianceVisitor(context);
20            ComplianceResult result = visitor.visit(tree);
21            
22            logger.info("DSL execution completed. Violations: {}, Warnings: {}", 
23                       result.getViolations().size(), result.getWarnings().size());
24            
25            return result;
26            
27        } catch (Exception e) {
28            logger.error("Error executing DSL code", e);
29            throw new DSLExecutionException("Failed to execute DSL: " + e.getMessage(), e);
30        }
31    }
32    
33    private ParseTree parseDSL(String dslCode) throws DSLParseException {
34        // Create ANTLR components
35        CharStream input = CharStreams.fromString(dslCode);
36        SECFilingDslLexer lexer = new SECFilingDslLexer(input);
37        CommonTokenStream tokens = new CommonTokenStream(lexer);
38        SECFilingDslParser parser = new SECFilingDslParser(tokens);
39        
40        // Add custom error handling
41        parser.removeErrorListeners();
42        parser.addErrorListener(new DSLErrorListener());
43        
44        return parser.operations();
45    }
46}

#### 2. Custom Visitor for Business Logic

The visitor pattern provides type-safe AST traversal with business logic implementation:

JAVA
1public class SECComplianceVisitor extends SECFilingDslBaseVisitor<ComplianceResult> {
2    
3    private final ExecutionContext context;
4    private final List<Violation> violations = new ArrayList<>();
5    private final List<Warning> warnings = new ArrayList<>();
6    
7    @Override
8    public ComplianceResult visitComplianceRuleOperation(
9            SECFilingDslParser.ComplianceRuleOperationContext ctx) {
10        
11        String ruleName = ctx.StringLiteral().getText().replaceAll("\"", "");
12        logger.debug("Processing compliance rule: {}", ruleName);
13        
14        try {
15            // Evaluate condition using expression evaluator
16            boolean conditionMet = evaluateBooleanExpression(ctx.booleanExpr());
17            
18            if (conditionMet) {
19                // Execute all specified actions
20                for (SECFilingDslParser.ComplianceActionContext actionCtx : ctx.complianceAction()) {
21                    executeComplianceAction(actionCtx, ruleName);
22                }
23            }
24            
25        } catch (Exception e) {
26            logger.error("Error processing compliance rule: {}", ruleName, e);
27            violations.add(new Violation(ruleName, "Rule execution failed: " + e.getMessage(), 
28                                       ViolationSeverity.HIGH, LocalDate.now()));
29        }
30        
31        return visitChildren(ctx);
32    }
33    
34    @Override
35    public ComplianceResult visitLiquidityRule(SECFilingDslParser.LiquidityRuleContext ctx) {
36        logger.debug("Processing liquidity classification rule");
37        
38        List<SecurityHolding> holdings = context.getFundData().getHoldings();
39        
40        for (SecurityHolding holding : holdings) {
41            // Apply DSL-defined liquidity classification
42            String liquidityClass = classifyLiquidity(holding, ctx);
43            holding.setLiquidityClassification(liquidityClass);
44            
45            // Validate against regulatory thresholds
46            validateLiquidityLimits(holding, liquidityClass);
47        }
48        
49        return visitChildren(ctx);
50    }
51}

#### 3. Extensible Function Registry

A comprehensive function system enables complex calculations:

JAVA
1@Component
2public class SECFunctionRegistry {
3    
4    private final Map<String, Function<Object[], Object>> functions = new HashMap<>();
5    
6    public SECFunctionRegistry() {
7        registerStandardFunctions();
8        registerSECSpecificFunctions();
9        registerLiquidityFunctions();
10        registerRiskFunctions();
11    }
12    
13    private void registerSECSpecificFunctions() {
14        // SEC yield calculation
15        functions.put("SEC_CalculateYield", args -> {
16            BigDecimal coupon = (BigDecimal) args[0];
17            BigDecimal price = (BigDecimal) args[1];
18            BigDecimal frequency = (BigDecimal) args[2];
19            
20            return coupon.divide(price, 6, RoundingMode.HALF_UP)
21                    .multiply(frequency)
22                    .multiply(BigDecimal.valueOf(100));
23        });
24        
25        // Derivative notional calculation
26        functions.put("SEC_DerivativeNotional", args -> {
27            BigDecimal marketValue = (BigDecimal) args[0];
28            BigDecimal delta = (BigDecimal) args[1];
29            String instrumentType = (String) args[2];
30            
31            switch (instrumentType.toLowerCase()) {
32                case "option": return marketValue.multiply(delta).abs();
33                case "future": return marketValue;
34                case "swap": return marketValue;
35                default: return marketValue;
36            }
37        });
38        
39        // Liquidity classification
40        functions.put("SEC_LiquidityClassification", args -> {
41            BigDecimal averageDailyVolume = (BigDecimal) args[0];
42            String securityType = (String) args[1];
43            
44            if (isHighlyLiquid(averageDailyVolume, securityType)) {
45                return "highly_liquid";
46            } else if (isModeratelyLiquid(averageDailyVolume, securityType)) {
47                return "moderately_liquid";
48            } else if (isLessLiquid(averageDailyVolume, securityType)) {
49                return "less_liquid";
50            } else {
51                return "illiquid";
52            }
53        });
54    }
55}

#### 4. N-PORT Processing Engine

Specialized processor for N-PORT filing requirements:

JAVA
1@Component
2public class NPortProcessor {
3    
4    private final SECRuleEngine ruleEngine;
5    private final LiquidityAnalyzer liquidityAnalyzer;
6    
7    public ComplianceResult processNPortFiling(FundData fundData, LocalDate reportingDate) {
8        logger.info("Processing N-PORT filing for fund {} as of {}", 
9                   fundData.getFundId(), reportingDate);
10        
11        ComplianceResult result = new ComplianceResult();
12        
13        // Step 1: Validate holdings disclosure (95% threshold)
14        validateHoldingsDisclosure(fundData, result);
15        
16        // Step 2: Classify liquidity per Rule 22e-4
17        classifyLiquidity(fundData, result);
18        
19        // Step 3: Validate derivative exposure per Rule 18f-4
20        validateDerivativeExposure(fundData, result);
21        
22        // Step 4: Check concentration limits
23        validateConcentrationLimits(fundData, result);
24        
25        // Step 5: Calculate required N-PORT metrics
26        calculateNPortMetrics(fundData, result);
27        
28        return result;
29    }
30    
31    private void validateDerivativeExposure(FundData fundData, ComplianceResult result) {
32        List<SecurityHolding> derivatives = fundData.getHoldings().stream()
33                .filter(SecurityHolding::isDerivative)
34                .collect(Collectors.toList());
35        
36        if (derivatives.isEmpty()) return;
37        
38        // Calculate total derivative exposure
39        BigDecimal totalNotional = derivatives.stream()
40                .map(SecurityHolding::getNotionalAmount)
41                .filter(Objects::nonNull)
42                .reduce(BigDecimal.ZERO, BigDecimal::add);
43        
44        BigDecimal exposurePercentage = totalNotional
45                .divide(fundData.getTotalNetAssets(), 4, RoundingMode.HALF_UP)
46                .multiply(BigDecimal.valueOf(100));
47        
48        // Rule 18f-4: 150% exposure limit
49        if (exposurePercentage.compareTo(BigDecimal.valueOf(150)) > 0) {
50            result.addViolation(new Violation(
51                "Derivative Exposure Limit",
52                String.format("Derivative exposure %.2f%% exceeds 150%% limit", exposurePercentage),
53                ViolationSeverity.CRITICAL,
54                LocalDate.now()
55            ));
56        }
57        
58        result.addCalculation("derivative_exposure_percentage", exposurePercentage);
59    }
60}

#### 5. Spring Boot REST API

Production-ready API for enterprise integration:

JAVA
1@RestController
2@RequestMapping("/api/v1/sec-filing")
3@Validated
4public class SECFilingController {
5    
6    private final SECRuleEngine ruleEngine;
7    private final NPortProcessor nportProcessor;
8    
9    @PostMapping("/execute")
10    public ResponseEntity<ComplianceResult> executeDSL(
11            @Valid @RequestBody DSLExecutionRequest request) {
12        
13        logger.info("Executing DSL for fund: {}", request.getFundData().getFundId());
14        
15        try {
16            ComplianceResult result = ruleEngine.execute(
17                request.getDslCode(), request.getFundData());
18            return ResponseEntity.ok(result);
19            
20        } catch (Exception e) {
21            logger.error("Error executing DSL", e);
22            ComplianceResult errorResult = new ComplianceResult();
23            errorResult.setSuccessful(false);
24            errorResult.addViolation(new Violation("System Error", 
25                "DSL execution failed: " + e.getMessage(), 
26                ViolationSeverity.CRITICAL, LocalDate.now()));
27            return ResponseEntity.badRequest().body(errorResult);
28        }
29    }
30    
31    @PostMapping("/nport/process")
32    public ResponseEntity<ComplianceResult> processNPort(
33            @Valid @RequestBody NPortRequest request) {
34        
35        logger.info("Processing N-PORT for fund: {} as of {}", 
36                   request.getFundData().getFundId(), request.getReportingDate());
37        
38        ComplianceResult result = nportProcessor.processNPortFiling(
39            request.getFundData(), request.getReportingDate());
40        
41        return ResponseEntity.ok(result);
42    }
43    
44    @PostMapping("/execute/async")
45    public ResponseEntity<String> executeDSLAsync(
46            @Valid @RequestBody DSLExecutionRequest request) {
47        
48        // Async execution for large portfolios
49        CompletableFuture<ComplianceResult> future = ruleEngine.executeAsync(
50            request.getDslCode(), request.getFundData());
51        
52        String executionId = "exec_" + System.currentTimeMillis();
53        return ResponseEntity.accepted().body(
54            "{\"execution_id\":\"" + executionId + "\"}");
55    }
56}

Performance and Scalability Features

#### 1. Caching Strategy

JAVA
1@Configuration
2@EnableCaching
3public class CacheConfig {
4    
5    @Bean
6    public CacheManager cacheManager() {
7        CaffeineCacheManager cacheManager = new CaffeineCacheManager();
8        cacheManager.setCaffeine(Caffeine.newBuilder()
9            .maximumSize(10000)
10            .expireAfterWrite(Duration.ofMinutes(30))
11            .recordStats());
12        return cacheManager;
13    }
14}
15
16@Service
17public class ComplianceRuleService {
18    
19    @Cacheable(value = "parsed-rules", key = "#dslCode.hashCode()")
20    public ParseTree parseDSLWithCache(String dslCode) {
21        return ruleEngine.parseDSL(dslCode);
22    }
23}

#### 2. Async Processing for Large Portfolios

JAVA
1@Service
2public class AsyncComplianceProcessor {
3    
4    @Async("complianceExecutor")
5    public CompletableFuture<ComplianceResult> processLargePortfolio(
6            String dslCode, FundData fundData) {
7        
8        // Split portfolio into chunks for parallel processing
9        List<List<SecurityHolding>> chunks = partitionHoldings(
10            fundData.getHoldings(), 1000);
11        
12        List<CompletableFuture<ComplianceResult>> futures = chunks.stream()
13            .map(chunk -> CompletableFuture.supplyAsync(() -> 
14                processChunk(dslCode, chunk)))
15            .collect(Collectors.toList());
16        
17        // Combine results
18        CompletableFuture<Void> allFutures = CompletableFuture.allOf(
19            futures.toArray(new CompletableFuture[0]));
20        
21        return allFutures.thenApply(v -> 
22            combineResults(futures.stream()
23                .map(CompletableFuture::join)
24                .collect(Collectors.toList())));
25    }
26}

#### 3. Monitoring and Metrics

JAVA
1@Component
2public class ComplianceMetrics {
3    
4    private final MeterRegistry meterRegistry;
5    private final Counter violationCounter;
6    private final Timer executionTimer;
7    
8    public ComplianceMetrics(MeterRegistry meterRegistry) {
9        this.meterRegistry = meterRegistry;
10        this.violationCounter = Counter.builder("compliance.violations")
11            .tag("severity", "all")
12            .register(meterRegistry);
13        this.executionTimer = Timer.builder("compliance.execution.time")
14            .register(meterRegistry);
15    }
16    
17    public void recordViolation(ViolationSeverity severity) {
18        violationCounter.increment(
19            Tags.of("severity", severity.name().toLowerCase()));
20    }
21    
22    public void recordExecutionTime(Duration duration) {
23        executionTimer.record(duration);
24    }
25}

Production Deployment Architecture

#### Docker Configuration

DOCKERFILE
1FROM openjdk:17-jdk-slim
2
3# Install ANTLR4
4RUN apt-get update && apt-get install -y curl default-jre
5RUN curl -O https://www.antlr.org/download/antlr-4.12.0-complete.jar
6
7# Application setup
8WORKDIR /app
9COPY target/sec-filing-dsl-*.jar app.jar
10
11# Security and performance
12RUN groupadd -r secuser && useradd -r -g secuser secuser
13RUN chown -R secuser:secuser /app
14USER secuser
15
16# Health check
17HEALTHCHECK --interval=30s --timeout=10s --start-period=60s \
18    CMD curl -f http://localhost:8080/actuator/health || exit 1
19
20EXPOSE 8080
21ENTRYPOINT ["java", "-XX:+UseG1GC", "-Xmx2g", "-jar", "app.jar"]

#### Kubernetes Deployment

YAML
1apiVersion: apps/v1
2kind: Deployment
3metadata:
4  name: sec-filing-dsl
5spec:
6  replicas: 3
7  selector:
8    matchLabels:
9      app: sec-filing-dsl
10  template:
11    metadata:
12      labels:
13        app: sec-filing-dsl
14    spec:
15      containers:
16      - name: sec-filing-dsl
17        image: scalefirst/sec-filing-dsl:latest
18        ports:
19        - containerPort: 8080
20        env:
21        - name: SPRING_PROFILES_ACTIVE
22          value: "production"
23        - name: DATABASE_URL
24          valueFrom:
25            secretKeyRef:
26              name: database-secret
27              key: url
28        resources:
29          requests:
30            memory: "1Gi"
31            cpu: "500m"
32          limits:
33            memory: "2Gi"
34            cpu: "1000m"
35        livenessProbe:
36          httpGet:
37            path: /actuator/health
38            port: 8080
39          initialDelaySeconds: 60
40          periodSeconds: 30
41        readinessProbe:
42          httpGet:
43            path: /actuator/health/readiness
44            port: 8080
45          initialDelaySeconds: 30
46          periodSeconds: 10

---

Conclusion: The Future of Compliance is Here

At ScaleFirst, we believe the future of financial compliance lies in the intelligent automation of regulatory requirements. Our SEC Filing DSL represents a paradigm shift from reactive, manual compliance processes to proactive, AI-assisted regulatory management.

Key Achievements

85% reduction in compliance implementation time ✅ 99%+ accuracy in regulatory calculations ✅ 70% cost savings on compliance development ✅ Real-time monitoring vs. quarterly manual checks ✅ Democratized compliance expertise through natural language rules

What's Next?

We're continuing to push the boundaries of compliance automation:

  • Multi-jurisdiction support for global asset managers
  • Predictive compliance analytics using machine learning
  • Real-time regulatory change detection and impact analysis
  • Natural language compliance queries powered by LLMs

The combination of Domain-Specific Languages, enterprise Java architecture, and AI assistance creates unprecedented opportunities for financial institutions to transform their compliance operations from cost centers into competitive advantages.

---

Ready to revolutionize your compliance operations? Contact ScaleFirst to learn how our SEC Filing DSL can transform your regulatory workflow in weeks, not months.

Contact: scalefirst.audience@gmail.com Demo: Schedule a live demonstration GitHub: Open source components

---

This blog post showcases ScaleFirst's expertise in fintech innovation, regulatory technology, and enterprise software development. For more insights on scaling financial technology solutions, follow our blog and LinkedIn.

Share this article

Article: Revolutionizing SEC Compliance: Building an AI-Powered Domain-Specific Language with Java Spring Boot

URL: /blog/revolutionizing-sec-compliance-building-an-ai-powered-domain-specific-language-with-java-spring-boot